1. "X\\sim N(\\mu, \\sigma^2\/n)"
Given "\\mu=75.5, \\sigma=3.5,n_1=2,n_2=52"
"\\sigma\/\\sqrt{n_2}-\\sigma\/\\sqrt{n_2}=3.5\/\\sqrt{52}-3.5\/\\sqrt{4}\\approx-1.2646" The standard deviation is reduced by "1.2646" psi.
2.
"f(x) = \\begin{cases}\n 1\/3, & x=1,2,3 \\\\\n 0, &\\text{otherwise } \n\\end{cases}"Given "n=38, a=1, b=3."
Sample mean
"\\mu_{\\bar{X}}={b+a \\over 2}={3+1 \\over 2}=2" Standard deviation
"\\sigma_{\\bar{X}}=\\sqrt{{(b-a+1)^2-1 \\over 12}}=\\sqrt{{(3-1+1)^2-1 \\over 12}}=\\sqrt{{2 \\over 3}}\\approx0.8165"
"P(2.1<\\bar{X}<2.4)=P(\\dfrac{2.4-\\mu_{\\bar{X}}}{\\sigma_{\\bar{X}}\/\\sqrt{n}}<Z<\\dfrac{2.1-\\mu_{\\bar{X}}}{\\sigma_{\\bar{X}}\/\\sqrt{n}})="
"=P(\\dfrac{2.4-2}{0.8165\/\\sqrt{38}}<Z<\\dfrac{2.1-2}{0.8165\/\\sqrt{38}})\\approx"
"\\approx P(Z<3.0199)-P(Z\\leq0.7550\\approx"
"\\approx0.99874-0.77488\\approx0.2239" The probability is "0.2239"
Comments
Leave a comment