Answer to Question #122279 in Statistics and Probability for Joseph Se

Question #122279
Determine the value of c that makes the function, f(x,y) = cxy a joint probability density function over the range 0 < x < 3 and 0 < y <x.

c = ______ Round your answer to four decimal places (e.g. 98.7654).

Determine the following:

a. P (X < 1.4, Y< 2.2) = ___ Round your answer to three decimal places (e.g. 98.765).
b. P ( 1.4 X < 2.2) = ____ Round your answer to three decimal places (e.g. 98.765).
c. P (Y > 1) =___ Round your answer to three decimal places (e.g. 98.765).
D. P (X < 2, Y < 2) = ____ Round your answer to three decimal places (e.g. 98.765).
E. E(X) = ____ Round your answer to three decimal places (e.g. 98.765).
F. E(Y) = ____ Round your answer to three decimal places (e.g. 98.765).
1
Expert's answer
2020-06-15T19:21:06-0400
"f(x, y)=cxy, 0<x<3, 0<y<x"


"\\displaystyle\\int_{0}^3\\displaystyle\\int_{0}^xcxydydx=c\\displaystyle\\int_{0}^3x\\big[{y^2\\over 2}\\big]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx={c\\over 2}\\displaystyle\\int_{0}^3x^3dx="

"={c\\over 8}[x^4]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}={81\\over 8}c=1"

Then "c=\\dfrac{8}{81}\\approx0.0988."

The joint probability density function then becomes


"f(x, y)=0.0988xy, 0<x<3, 0<y<x"

Determine the following:

a.

"P(X<1.4, Y<2.2)=\\displaystyle\\int_{0}^{1.4}\\displaystyle\\int_{0}^{x}0.0988xydydx="

"=0.0494\\displaystyle\\int_{0}^{1.4}x[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.01235[x^4]\\begin{matrix}\n 1.4 \\\\\n 0\n\\end{matrix}\\approx0.047"

b.


"P(1.4<X<2.2)=P(1.4<X<2.2, 0<Y<x)="


"=\\displaystyle\\int_{1.4}^{2.2}\\displaystyle\\int_{0}^{x}0.0988xydydx=0.0494\\displaystyle\\int_{1.4}^{2.2}x[y^2]\\begin{matrix}\n x \\\\\n 0\n\\end{matrix}dx="


"=0.0494\\displaystyle\\int_{1.4}^{2.2}x^3dx=0.01235[x^4]\\begin{matrix}\n 2.2 \\\\\n 1.4\n\\end{matrix}\\approx0.242"

c.


"P(Y>1)=P(1<X<3, 1<Y<x)="

"=\\displaystyle\\int_{1}^{3}\\displaystyle\\int_{1}^{x}0.0988xydydx=0.0494\\displaystyle\\int_{1}^{3}x[y^2]\\begin{matrix}\n x \\\\\n 1\n\\end{matrix}dx="

"=0.0494\\displaystyle\\int_{1}^{3}(x^3-x)dx=0.0494[0.25x^4-0.5x^2]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}\\approx"

"\\approx0.790"

d.


"P(X<2, Y<2)=\\displaystyle\\int_{0}^{2}\\displaystyle\\int_{0}^{x}0.0988xydydx="

"=0.0494\\displaystyle\\int_{0}^{2}x[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.01235[x^4]\\begin{matrix}\n 2\\\\\n 0\n\\end{matrix}\\approx0.198"

e.


"E(X)=\\displaystyle\\int_{0}^{3}\\displaystyle\\int_{0}^{x}x\\cdot0.0988xydydx="

"=0.0494\\displaystyle\\int_{0}^{3}x^2[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.00988[x^5]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}\\approx2.401"

f.


"E(Y)=\\displaystyle\\int_{0}^{3}\\displaystyle\\int_{0}^{x}y\\cdot0.0988xydydx="

"={0.0988\\over 3}\\displaystyle\\int_{0}^{3}x[y^3]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx={0.01976\\over 3}[x^5]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}\\approx1.601"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog