f(x,y)=cxy,0<x<3,0<y<x
∫03∫0xcxydydx=c∫03x[2y2]x0dx=2c∫03x3dx=
=8c[x4]30=881c=1 Then c=818≈0.0988.
The joint probability density function then becomes
f(x,y)=0.0988xy,0<x<3,0<y<xDetermine the following:
a.
P(X<1.4,Y<2.2)=∫01.4∫0x0.0988xydydx=
=0.0494∫01.4x[y2]x0dx=0.01235[x4]1.40≈0.047
b.
P(1.4<X<2.2)=P(1.4<X<2.2,0<Y<x)=
=∫1.42.2∫0x0.0988xydydx=0.0494∫1.42.2x[y2]x0dx=
=0.0494∫1.42.2x3dx=0.01235[x4]2.21.4≈0.242
c.
P(Y>1)=P(1<X<3,1<Y<x)=
=∫13∫1x0.0988xydydx=0.0494∫13x[y2]x1dx=
=0.0494∫13(x3−x)dx=0.0494[0.25x4−0.5x2]31≈
≈0.790 d.
P(X<2,Y<2)=∫02∫0x0.0988xydydx=
=0.0494∫02x[y2]x0dx=0.01235[x4]20≈0.198 e.
E(X)=∫03∫0xx⋅0.0988xydydx=
=0.0494∫03x2[y2]x0dx=0.00988[x5]30≈2.401
f.
E(Y)=∫03∫0xy⋅0.0988xydydx=
=30.0988∫03x[y3]x0dx=30.01976[x5]30≈1.601
Comments