"={c\\over 8}[x^4]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}={81\\over 8}c=1"
Then "c=\\dfrac{8}{81}\\approx0.0988."
The joint probability density function then becomes
Determine the following:
a.
"P(X<1.4, Y<2.2)=\\displaystyle\\int_{0}^{1.4}\\displaystyle\\int_{0}^{x}0.0988xydydx=""=0.0494\\displaystyle\\int_{0}^{1.4}x[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.01235[x^4]\\begin{matrix}\n 1.4 \\\\\n 0\n\\end{matrix}\\approx0.047"
b.
c.
"=\\displaystyle\\int_{1}^{3}\\displaystyle\\int_{1}^{x}0.0988xydydx=0.0494\\displaystyle\\int_{1}^{3}x[y^2]\\begin{matrix}\n x \\\\\n 1\n\\end{matrix}dx="
"=0.0494\\displaystyle\\int_{1}^{3}(x^3-x)dx=0.0494[0.25x^4-0.5x^2]\\begin{matrix}\n 3 \\\\\n 1\n\\end{matrix}\\approx"
"\\approx0.790"
d.
"=0.0494\\displaystyle\\int_{0}^{2}x[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.01235[x^4]\\begin{matrix}\n 2\\\\\n 0\n\\end{matrix}\\approx0.198"
e.
"=0.0494\\displaystyle\\int_{0}^{3}x^2[y^2]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx=0.00988[x^5]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}\\approx2.401"
f.
"={0.0988\\over 3}\\displaystyle\\int_{0}^{3}x[y^3]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}dx={0.01976\\over 3}[x^5]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}\\approx1.601"
Comments
Leave a comment