Question #122279
Determine the value of c that makes the function, f(x,y) = cxy a joint probability density function over the range 0 < x < 3 and 0 < y <x.

c = ______ Round your answer to four decimal places (e.g. 98.7654).

Determine the following:

a. P (X < 1.4, Y< 2.2) = ___ Round your answer to three decimal places (e.g. 98.765).
b. P ( 1.4 X < 2.2) = ____ Round your answer to three decimal places (e.g. 98.765).
c. P (Y > 1) =___ Round your answer to three decimal places (e.g. 98.765).
D. P (X < 2, Y < 2) = ____ Round your answer to three decimal places (e.g. 98.765).
E. E(X) = ____ Round your answer to three decimal places (e.g. 98.765).
F. E(Y) = ____ Round your answer to three decimal places (e.g. 98.765).
1
Expert's answer
2020-06-15T19:21:06-0400
f(x,y)=cxy,0<x<3,0<y<xf(x, y)=cxy, 0<x<3, 0<y<x


030xcxydydx=c03x[y22]x0dx=c203x3dx=\displaystyle\int_{0}^3\displaystyle\int_{0}^xcxydydx=c\displaystyle\int_{0}^3x\big[{y^2\over 2}\big]\begin{matrix} x \\ 0 \end{matrix}dx={c\over 2}\displaystyle\int_{0}^3x^3dx=

=c8[x4]30=818c=1={c\over 8}[x^4]\begin{matrix} 3 \\ 0 \end{matrix}={81\over 8}c=1

Then c=8810.0988.c=\dfrac{8}{81}\approx0.0988.

The joint probability density function then becomes


f(x,y)=0.0988xy,0<x<3,0<y<xf(x, y)=0.0988xy, 0<x<3, 0<y<x

Determine the following:

a.

P(X<1.4,Y<2.2)=01.40x0.0988xydydx=P(X<1.4, Y<2.2)=\displaystyle\int_{0}^{1.4}\displaystyle\int_{0}^{x}0.0988xydydx=

=0.049401.4x[y2]x0dx=0.01235[x4]1.400.047=0.0494\displaystyle\int_{0}^{1.4}x[y^2]\begin{matrix} x\\ 0 \end{matrix}dx=0.01235[x^4]\begin{matrix} 1.4 \\ 0 \end{matrix}\approx0.047

b.


P(1.4<X<2.2)=P(1.4<X<2.2,0<Y<x)=P(1.4<X<2.2)=P(1.4<X<2.2, 0<Y<x)=


=1.42.20x0.0988xydydx=0.04941.42.2x[y2]x0dx==\displaystyle\int_{1.4}^{2.2}\displaystyle\int_{0}^{x}0.0988xydydx=0.0494\displaystyle\int_{1.4}^{2.2}x[y^2]\begin{matrix} x \\ 0 \end{matrix}dx=


=0.04941.42.2x3dx=0.01235[x4]2.21.40.242=0.0494\displaystyle\int_{1.4}^{2.2}x^3dx=0.01235[x^4]\begin{matrix} 2.2 \\ 1.4 \end{matrix}\approx0.242

c.


P(Y>1)=P(1<X<3,1<Y<x)=P(Y>1)=P(1<X<3, 1<Y<x)=

=131x0.0988xydydx=0.049413x[y2]x1dx==\displaystyle\int_{1}^{3}\displaystyle\int_{1}^{x}0.0988xydydx=0.0494\displaystyle\int_{1}^{3}x[y^2]\begin{matrix} x \\ 1 \end{matrix}dx=

=0.049413(x3x)dx=0.0494[0.25x40.5x2]31=0.0494\displaystyle\int_{1}^{3}(x^3-x)dx=0.0494[0.25x^4-0.5x^2]\begin{matrix} 3 \\ 1 \end{matrix}\approx

0.790\approx0.790

d.


P(X<2,Y<2)=020x0.0988xydydx=P(X<2, Y<2)=\displaystyle\int_{0}^{2}\displaystyle\int_{0}^{x}0.0988xydydx=

=0.049402x[y2]x0dx=0.01235[x4]200.198=0.0494\displaystyle\int_{0}^{2}x[y^2]\begin{matrix} x\\ 0 \end{matrix}dx=0.01235[x^4]\begin{matrix} 2\\ 0 \end{matrix}\approx0.198

e.


E(X)=030xx0.0988xydydx=E(X)=\displaystyle\int_{0}^{3}\displaystyle\int_{0}^{x}x\cdot0.0988xydydx=

=0.049403x2[y2]x0dx=0.00988[x5]302.401=0.0494\displaystyle\int_{0}^{3}x^2[y^2]\begin{matrix} x\\ 0 \end{matrix}dx=0.00988[x^5]\begin{matrix} 3 \\ 0 \end{matrix}\approx2.401

f.


E(Y)=030xy0.0988xydydx=E(Y)=\displaystyle\int_{0}^{3}\displaystyle\int_{0}^{x}y\cdot0.0988xydydx=

=0.0988303x[y3]x0dx=0.019763[x5]301.601={0.0988\over 3}\displaystyle\int_{0}^{3}x[y^3]\begin{matrix} x\\ 0 \end{matrix}dx={0.01976\over 3}[x^5]\begin{matrix} 3 \\ 0 \end{matrix}\approx1.601


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS