The amount of fill dispensed by a bottling machine is normally distributed with "\\sigma=1" ounces and n=9. Suppose "\\overline{y}" be the random variables.
To find : "P(\\left | \\overline{y}-\\mu|\\leq 0.3 \\right )"
Solution :
"P(\\left | \\overline{y}-\\mu |\\leq 0.3 \\right)=P(-0.3\\leq \\overline{y}-\\mu\\leq 0.3)\n\n\n=P(\\frac{-0.3}{\\frac{1}{\\sqrt{9}}}\\leq \\frac{\\overline{y}-\\mu}{\\frac{1}{\\sqrt{9}}}\\leq\\frac{0.3}{\\frac{1}{\\sqrt{9}}})"
"=P(-0.9\\leq Z\\leq 0.9)"
=0.6318(using z table)
answer: 0.6318
Comments
Leave a comment