"Z\\sim N(0,1\/2)" , "\\mu =0,\\ \\sigma ^2=1\/2"
We will use the following properties:
"P(X<a)=F(a)=1-F(-a)"
"P(X>a)=1-F(a)=F(-a)"
"P(a<X<b)=F(b)-F(a)"
"F(x)=\\Phi (\\frac{x-\\mu}{\\sigma})"
a) "P(Z>2)=1-F(2)=1-\\Phi(2\\sqrt2)\\approx 1-\\Phi(2.82)=1-0.9976=0.0024"
b) "P(Z<-2)=F(-2)=1-F(2)=0.0024"
c) "P(-1<Z<0.5)=F(0.5)-F(-1)=\\Phi(1\/\\sqrt 2)-\\Phi(-\\sqrt 2)\\approx\\Phi(0.70)- \\Phi(-1.41)=0.7580-0.0793\\approx 0.68"
Comments
Leave a comment