Z∼N(0,1/2)Z\sim N(0,1/2)Z∼N(0,1/2) , μ=0, σ2=1/2\mu =0,\ \sigma ^2=1/2μ=0, σ2=1/2
We will use the following properties:
P(X<a)=F(a)=1−F(−a)P(X<a)=F(a)=1-F(-a)P(X<a)=F(a)=1−F(−a)
P(X>a)=1−F(a)=F(−a)P(X>a)=1-F(a)=F(-a)P(X>a)=1−F(a)=F(−a)
P(a<X<b)=F(b)−F(a)P(a<X<b)=F(b)-F(a)P(a<X<b)=F(b)−F(a)
F(x)=Φ(x−μσ)F(x)=\Phi (\frac{x-\mu}{\sigma})F(x)=Φ(σx−μ)
a) P(Z>2)=1−F(2)=1−Φ(22)≈1−Φ(2.82)=1−0.9976=0.0024P(Z>2)=1-F(2)=1-\Phi(2\sqrt2)\approx 1-\Phi(2.82)=1-0.9976=0.0024P(Z>2)=1−F(2)=1−Φ(22)≈1−Φ(2.82)=1−0.9976=0.0024
b) P(Z<−2)=F(−2)=1−F(2)=0.0024P(Z<-2)=F(-2)=1-F(2)=0.0024P(Z<−2)=F(−2)=1−F(2)=0.0024
c) P(−1<Z<0.5)=F(0.5)−F(−1)=Φ(1/2)−Φ(−2)≈Φ(0.70)−Φ(−1.41)=0.7580−0.0793≈0.68P(-1<Z<0.5)=F(0.5)-F(-1)=\Phi(1/\sqrt 2)-\Phi(-\sqrt 2)\approx\Phi(0.70)- \Phi(-1.41)=0.7580-0.0793\approx 0.68P(−1<Z<0.5)=F(0.5)−F(−1)=Φ(1/2)−Φ(−2)≈Φ(0.70)−Φ(−1.41)=0.7580−0.0793≈0.68
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments