How many beads are there in the bag?
a) 3 are red 2 or green and one is blue?
"P(3\\ red, 2\\ green, 1\\ blue)=\\dfrac{\\dbinom{5}{3}\\dbinom{6}{2}\\dbinom{4}{1}\\dbinom{2}{0}}{\\dbinom{17}{6}}""\\binom{5}{3}={5!\\over 3!(5-3)!}=10""\\binom{6}{2}={6!\\over 2!(6-2)!}=15""\\binom{4}{1}={4!\\over 1!(4-1)!}=4""\\binom{2}{0}={2!\\over 0!(2-0)!}=1""\\binom{17}{6}={17!\\over 6!(17-6)!}=12376""P(3\\ red, 2\\ green, 1\\ blue)={10\\cdot 15\\cdot4\\cdot1\\over 12376}={75\\over 1547}\\approx0.048481"
b) 2 are green 2 are blue and 2 are white?
"P( 2\\ green, 2\\ blue, 2\\ white)={1\\cdot 15\\cdot6\\cdot1\\over 12376}={45\\over 6188}\\approx0.007272"
c) 3 are blue
"P(3\\ blue)=\\dfrac{4\\cdot 286}{12376}={11\\over 119}\\approx0.092437"
d) At least 4 are green
"=P(4\\ green)+P(5\\ green)+P(6\\green)="
"=\\dfrac{\\dbinom{6}{4}\\dbinom{17-6}{6-4}}{\\dbinom{17}{6}}+\\dfrac{\\dbinom{6}{5}\\dbinom{17-6}{6-5}}{\\dbinom{17}{6}}+"
"+\\dfrac{\\dbinom{6}{6}\\dbinom{17-6}{6-6}}{\\dbinom{17}{6}}"
"\\binom{6}{4}={6!\\over 4!(6-4)!}=15""\\binom{6}{5}={6!\\over 5!(6-5)!}=6""\\binom{6}{6}={6!\\over 6!(6-6)!}=1""\\binom{11}{2}={11!\\over 2!(11-2)!}=55""\\binom{11}{1}={11!\\over 1!(11-1)!}=11""\\binom{11}{0}={11!\\over 0!(11-0)!}=1"
"P(at\\ least\\ 4\\ green)={15\\cdot 55\\over 12376}+{6\\cdot 11\\over 12376}+{1\\cdot 1\\over 12376}="
"={223\\over 3094}\\approx0.072075"
e) At least 1 is red bead?
"=1-\\dfrac{\\dbinom{5}{0}\\dbinom{17-5}{6-0}}{\\dbinom{17}{6}}"
"\\binom{12}{6}={12!\\over 6!(12-6)!}=924"
"P(at\\ least\\ 1\\ red)=1-{1\\cdot 924\\over 12376}={409\\over 442}\\approx0.925339"
Comments
Leave a comment