"\\text{Let the proportion of town voter is}\\; p_{1}\\\\\n\\text{and the proportion of country voter is}\\; p_{2},\\\\\n\\hat p_{1}=\\frac{60}{100}=0.6\\\\\n\\hat p_{2}=\\frac{150}{300}=0.5\\\\\n\\hat p_{p}=\\frac{60+150}{100+300}=0.525\\\\\nH_0: p_{1}\\leq p_{2}\\\\\nH_1:p_{1}> p_{2}\\\\\nLet \\; \\alpha =0.05\\implies Z_{\u03b1}=Z_{0.05}=1.65,\\\\\nZ=\\frac{\\hat p_{1} -\\hat p_{2}}{\\sqrt{\\hat p_{p}(1-\\hat p_{p})(\\frac{1}{n_{1}}+\\frac{1}{n_{2}})}}\\\\\nZ=\\frac{0.6 -0.5}{\\sqrt{0.525(0.475)(\\frac{1}{100}+\\frac{1}{300})}}=1.73\\\\\n\\text{the rejection region} :\\;z>1.65\\\\\n\\text{The decision is to reject}:\\; H_0\\\\\n\\text{this means that the proportion of town voters is }\\\\\n\\text{higher than the proportion of country voters }"
Comments
Leave a comment