a) Let "X=" the height of the traveller: "X\\sim N(\\mu, \\sigma^2)." Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0,1)"
Given "\\mu=160\\ cm,\\sigma=8\\ cm"
(i)
"P(148<X<175)=P(X<175)-P(X\\leq 148)=""=P(Z<{175-160\\over 8})-P(Z\\leq{148-160\\over 8})="
"=P(Z<1.875)-P(Z\\leq-1.5)\\approx"
"\\approx0.9696-0.0668=0.9028"
(ii)
"=1-P(Z\\leq0.5)\\approx1-0.6915=0.3085"
(iii)
"P(X<179)=P(Z<{179-160\\over 8})=P(Z<2.375)\\approx""\\approx0.9912"
b) Let "X=" the time taken for the nearest Covid-19 ambulance team to convey a patient:
"X\\sim N(\\mu, \\sigma^2)." Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0,1)."
Given "\\mu=60\\ s, \\sigma=8\\ s."
(i)
"P(X<50)=P(Z<{50-60\\over 8})=P(Z<-1.25)\\approx""\\approx0.1056""200\\cdot0.1056\\approx21"
(ii)
"0.3085\\cdot 200=62"
c) Let "X=" the Shelf life of a particular dairy product: "X\\sim N(\\mu, \\sigma^2)."
Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0,1)."
Given "\\mu=12, \\sigma^2=9."
"=P(Z<{16-12\\over 3})-P(Z\\leq{13-12\\over 3})\\approx"
"\\approx P(Z<1.3333)-P(Z\\leq0.3333)\\approx"
"\\approx0.9088-0.6306=0.2782"
About "27.82\\ \\%" 27.82 of the products last between 13 and 16 days.
Comments
Leave a comment