2020-05-31T04:55:39-04:00
Suppose a ball is drawn at random from a box containing three white and three black
balls. After a ball is drawn, it is then replaced and another drawn. What is the
probability that of the first four balls drawn, exactly two are white?
1
2020-06-02T19:07:20-0400
P ( W W B B ) + P ( W B B W ) + P ( W B W B ) + P(WWBB)+P(WBBW)+P(WBWB)+ P ( WW BB ) + P ( W BB W ) + P ( W B W B ) +
+ P ( B W W B ) + P ( B W B W ) + P ( B B W W ) = +P(BWWB)+P(BWBW)+P(BBWW)= + P ( B WW B ) + P ( B W B W ) + P ( BB WW ) =
= ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) + ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) + =({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})+({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})+ = ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) + ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) +
+ ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) + ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) + +({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})+({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})+ + ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) + ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) +
+ ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) + ( 3 6 ) ( 3 6 ) ( 3 6 ) ( 3 6 ) = +({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})+({3 \over 6})({3\over 6})({3 \over 6})({3 \over 6})= + ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) + ( 6 3 ) ( 6 3 ) ( 6 3 ) ( 6 3 ) =
= 6 ( 1 16 ) = 3 8 = 0.375 =6({1\over 16})={3\over 8}=0.375 = 6 ( 16 1 ) = 8 3 = 0.375
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments