Geometric distribution
If repeated independent trials can result in a success with probability "p" and a failure with probability "q=1-p," then the probability distribution of the random variable "X," the number of the trial on which the first success occurs, is
Given "p=\\dfrac{1}{6}"
"P(X=2)={1 \\over 6}(1-{1 \\over 6})^1={1 \\over 6}({5 \\over 6})^1"
"..."
"P(X=10)={1 \\over 6}(1-{1 \\over 6})^{9}={1 \\over 6}({5 \\over 6})^{9}"
"P(X\\leq10)=\\displaystyle\\sum_{i=1}^{10}P(X=x_i)={1 \\over 6}\\displaystyle\\sum_{i=1}^{10}({5 \\over 6})^{i-1}="
"={1 \\over 6}\\cdot\\dfrac{1-({5 \\over 6})^{10}}{1-{5\\over 6}}=1-({5 \\over 6})^{10}"
"P(X>10)=1-P(X\\leq10)=({5 \\over 6})^{10}\\approx0.162"
Comments
Leave a comment