8. Let "X=" the number of defective fuses:"X\\sim Bin(n,p)"
Given "n=6,p=0.05". What is the probability that more than one fuse will be defective, given that at least one is defective?
"=1-P(X=0)-P(X=1)="
"=1-\\binom{6}{0}(0.05)^0(1-0.05)^{6-0}-\\binom{6}{1}(0.05)^1(1-0.05)^{61}\\approx"
"\\approx1-0.735092-0.232134\\approx0.032774"
"P(X>1|X\\geq1)={P(X>1,X\\geq1)\\over P(X\\geq1}\\approx"
"\\approx{0.032774\\over 0.264908}\\approx0.1237"
9. Let "X=" the number of bulls hitted by an archer: "X\\sim Bin (n, p)"
Given "n=96>20, p=1\/32"
Using the Poisson approximation with "\\lambda=np=96(\\dfrac{a}{b})=3<5"
"={e^{-\\lambda}\\cdot\\lambda^0 \\over 0!}+{e^{-\\lambda}\\cdot\\lambda^1 \\over 1!}="
"=e^{-3}(1+3)=4e^{-3}\\approx0.1991"
10. Let "X=" the number of correctly solved questions: "X\\sim Bin(n,p)"
Given "n=10,p=0.2"
"+P(X=9)+P(X=10)=\\binom{10}{6}(0.2)^6(1-0.2)^{10-6}+"
"+\\binom{10}{7}(0.2)^7(1-0.2)^{10-7}+\\binom{10}{8}(0.2)^8(1-0.2)^{10-8}+"
"+\\binom{10}{9}(0.2)^9(1-0.2)^{10-9}+\\binom{10}{10}(0.2)^{10}(1-0.2)^{10-10}="
"=210(0.2)^6(0.8)^4+120(0.2)^7(0.8)^3+45(0.2)^8(0.8)^2+"
"+10(0.2)^9(0.8)+(0.2)^{10}="
"=0.005505024+0.000786432+0.000073728+"
"+0.000004096+0.0000001024\\approx0.0064"
Comments
Leave a comment