Question #119227
1. Raymond is a basketball player who takes four independent free throws with 70% probability of getting a basket on each shot. Let X be the number of baskets Raymond
gets. Find the probability that he gets exactly 2 baskets, to 3 decimal places.

2. The lifetime of a machine is continuous on the interval (0, 40) with probability density
function f, where f(t) is proportional to (t+ 10)^−2
, and t is the lifetime in years. Find
the proportionality constant that makes the f(t) a probability function.

3. Suppose John throws a die repeatedly until he gets a six. What is the probability that he needs to throw more than 10 times to get a six, to 3 decimal places?

4.A random variable X has Poisson distribution with mean equal to 0.4. What is the probability that the random variable is greater than zero?
1
Expert's answer
2020-06-01T18:15:45-0400

1. XBin(n,p)1. \ X\sim Bin(n, p)


P(X=x)=(nk)px(1p)nxP(X=x)=\binom{n}{k}p^x(1-p)^{n-x}

Given p=0.7,n=4p=0.7,n=4

P(X=2)=(42)(0.7)2(10.7)42=P(X=2)=\binom{4}{2}(0.7)^2(1-0.7)^{4-2}==4!2!(42)!(0.21)2=0.26460.265={4!\over 2!(4-2)!}(0.21)^2=0.2646\approx0.265

2. Since f(t)f(t) is proportional to (10+t)2(10+t)^{-2} on the interval (0,40),(0,40), we conclude that there is a positive constant CC such that


f(t)={C(10+t)2if t(0,40)0,otherwisef(t) = \begin{cases} C(10+t)^{-2} &\text{if } t\in(0,40) \\ 0, &\text{otherwise} \end{cases}

We can determine the proportionality constant CC from the condition f(t)dt=1,\displaystyle\int_{-\infin}^{\infin}f(t)dt=1,

which must be satisfied because f(t)f(t) is a density. We have


1=f(t)dt=040C(10+t)2dt=1=\displaystyle\int_{-\infin}^{\infin}f(t)dt=\displaystyle\int_{0}^{40}C(10+t)^{-2}dt==C[110+t]400=C(150+110)=225C=-C\bigg[{1\over 10+t}\bigg]\begin{matrix} 40 \\ 0 \end{matrix}=C(-{1\over 50}+{1\over 10})={2\over 25}C

Therefore C=12.5.C=12.5.


f(t)={12.5(10+t)2if t(0,40)0,otherwisef(t) = \begin{cases} 12.5(10+t)^{-2} &\text{if } t\in(0,40) \\ 0, &\text{otherwise} \end{cases}

3. Geometric distribution

If repeated independent trials can result in a success with probability pp and a failure with probability q=1p,q=1-p, then the probability distribution of the random variable X,X, the number of the trial on which the first success occurs, is


g(x;p)=p(1p)x1,x=1,2,3,...g(x;p)=p(1-p)^{x-1}, x=1,2,3,...

Given p=16p=\dfrac{1}{6}


P(X=1)=16(116)0=16P(X=1)={1 \over 6}(1-{1 \over 6})^0={1 \over 6}P(X=2)=16(116)1=16(56)1P(X=2)={1 \over 6}(1-{1 \over 6})^1={1 \over 6}({5 \over 6})^1......P(X=10)=16(116)9=16(56)9P(X=10)={1 \over 6}(1-{1 \over 6})^{9}={1 \over 6}({5 \over 6})^{9}

P(X10)=i=110P(X=xi)=16i=110(56)i1=P(X\leq10)=\displaystyle\sum_{i=1}^{10}P(X=x_i)={1 \over 6}\displaystyle\sum_{i=1}^{10}({5 \over 6})^{i-1}==161(56)10156=1(56)10={1 \over 6}\cdot\dfrac{1-({5 \over 6})^{10}}{1-{5\over 6}}=1-({5 \over 6})^{10}P(X>10)=1P(X10)=(56)100.162P(X>10)=1-P(X\leq10)=({5 \over 6})^{10}\approx0.162

4.

P(X=x)=eμμxx!P(X=x)={e^{-\mu}\cdot \mu^x \over x!}

Given μ=0.4\mu=0.4


P(X=0)=e0.40.400!=e0.4P(X=0)={e^{-0.4}\cdot 0.4^0 \over 0!}=e^{-0.4}

P(X>0)=1P(X=0)=1e0.40.330P(X>0)=1-P(X=0)=1-e^{-0.4}\approx0.330


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS