Question #118628
For a mean of 20 and standard deviation of 5, find P(X ≤ 17 )
1
Expert's answer
2020-06-01T17:59:41-0400

Typically, a random variable has a discrete or continuous distribution. We shall consider these cases:

  1. Suppose that XX has a discrete distribution. This means that XX takes real values x1,x2,x3,x_1\,,x_2,\,x_3,\ldots (countable set) with probabilities p1,p2,p3,;p_1,\,p_2,\,p_3,\ldots; k=1pk=1\sum_{k=1}^{\infty}p_k=1 . We have the following formulae for the mean and the standard deviation: k=1xkpk=20\sum_{k=1}^{\infty}x_kp_k=20and k=1pk(xk20)2=25\sum_{k=1}^{\infty}p_k(x_k-20)^2=25 .

P(X17)=kKpk,P(X\leq17)=\sum_{k\in K}p_k, where {kNxk17}\{k\in {\mathbb{N}}|x_k\leq17\} .

2. Assume that XX has a continuous distribution. Then, XX  has a respective probability

density function p(x)p(x) satisfying +p(x)dx=1\int_{-\infty}^{+\infty}p(x)dx=1 . We have the following formulae for

the mean and the standard deviation:+xp(x)dx=20\int_{-\infty}^{+\infty}xp(x)dx=20 and

+p(x)(x20)2dx=25.\int_{-\infty}^{+\infty}p(x)(x-20)^2dx=25.

P(X17)=17p(x)dx.P(X\leq17)=\int_{-\infty}^{17}p(x)dx. In particular, in case XX has a normal distribution with

 μ=20,σ=5\mu=20,\,\sigma=5 we have P(X17)=152π17e12(x205)2dx0.274P(X\leq17)=\frac{1}{5\sqrt{2\pi}}\int_{-\infty}^{17}e^{-\frac12(\frac{x-20}{5})^2}dx\approx0.274.

The latter integral was computed with the help of Anaconda (free distribution of

the Python). The following code was used in Jupyter Notebook (a part of the distribution

for writing and running code) for calculation of the integral:

from scipy import integrate

import numpy as np

import math

func = lambda x:(1/(5*math.sqrt(2)*math.sqrt(math.pi)))*math.exp(-1/2*((x-20)/5)*

((x-20)/5))

Pr = integrate.quad(func, 0, 17)

print(Pr)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS