Poisson distribution with mean 6.
(a) P(=5)P(=5)P(=5)
p(=5)=e−6655!=0.160623141p(=5) = \frac{e^{-6}6^5}{5!}=0.160623141p(=5)=5!e−665=0.160623141
(b) P(≤3)P(\le3)P(≤3)
p(≤3)=∑03e−66xx!p(\le3) = \sum_0^3\frac{e^{-6}6^x}{x!}p(≤3)=∑03x!e−66x
=e−60!+e−6611!+e−6622!+e−6643!=\frac{e^{-6}}{0!}+\frac{e^{-6}6^1}{1!}+\frac{e^{-6}6^2}{2!}+\frac{e^{-6}6^4}{3!}=0!e−6+1!e−661+2!e−662+3!e−664
=0.002478752+0.014872513+0.044617539+0.089235078=0.002478752+0.014872513+0.044617539+0.089235078=0.002478752+0.014872513+0.044617539+0.089235078
=0.151203883=0.151203883=0.151203883
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments