Binomial distribution problem with P=0.05P=0.05P=0.05 and n=6n=6n=6
(a). P(1≤)P(1\le)P(1≤)
P(1≤)=1−P(=0)P(1\le)=1-P(=0)P(1≤)=1−P(=0)
P(=0)=(1−0.05)6=0.735092P(=0) = (1-0.05)^6=0.735092P(=0)=(1−0.05)6=0.735092
P(1≤)=1−0.735092=0.264908P(1\le)=1-0.735092=0.264908P(1≤)=1−0.735092=0.264908
(b). P(1<∣1≤)P(1<|1\le)P(1<∣1≤)
P(>1∣≥1)=P(>1)/P(≥1)P(>1|≥1)=P(>1)/P(≥1)P(>1∣≥1)=P(>1)/P(≥1)
P(>1)=1−P(=0)−P(=1)=1−0.735−0.232=0.033P(>1)=1-P(=0)-P(=1)=1-0.735-0.232=0.033P(>1)=1−P(=0)−P(=1)=1−0.735−0.232=0.033
P(>1∣≥1)=0.033/0.265=0.124P(>1|≥1)=0.033/0.265=0.124P(>1∣≥1)=0.033/0.265=0.124
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments