Question 23.
We have population proportion "p=0.2."
Sample proportion equals "\\pi=\\frac{34}{200}=0.17."
The answer is (3).
Question 24.
"SE_p=\\sqrt{\\frac{p(1-p)}{n}}=\\sqrt{\\frac{(0.2)(0.8)}{200}}\\approx 0.0283 (1)."
Question 25.
"np=200(0.2)=40\\geq 10\\\\\nn(1-p)=200(0.8)\\geq 10"
So "p" has normal distribution with mean 0.2 and standard deviation "\\sqrt{\\frac{(0.2)(0.8)}{200}}\\approx 0.0283."
"P\\{p\\geq 0.17\\}=1-P\\{p<0.17\\}=1-F(0.17).\\\\\nF(x)=\\frac{1}{\\sqrt{2\\pi}(0.0283)^2}\\int_{-\\infty}^{x} e^{-\\frac{(t-0.2)^2}{2(0.0283)^2}}dt\\\\\nF(0.17)=\\Phi(\\frac{0.17-0.2}{0.0283})=\\Phi(-1.06)=1-\\Phi(1.06)\\\\\n\\Phi(x)=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^x e^{-\\frac{z^2}{2}}dz\\\\\nP\\{p\\geq 0.17\\}=1-(1-\\Phi(1.06))=\\Phi(1.06)\\approx 0.8554."
The answer is (1).
Comments
Leave a comment