Question #112804
Find y on x and x on y
Price in RS :(12),(15),(18),(25),(22),(18),(30). Demand in kg : (65),(60),(50),(41),(40),(56),(45).
1)Find the equaition line y on x
2) find the equation line on x on y
3)find the demand when price is 35
4)find the price when demand is 25.
1
Expert's answer
2020-05-04T17:55:33-0400

Let x=x= price in RS, y=y= demand in kg


xyxyx2y212657801444225156090022536001850900324250025411025625168122408804841600185610083243136304513509002025Sum=1403576843302618767\begin{matrix} & x & y & xy & x^2 & y^2 \\ & 12 & 65 & 780 & 144 & 4225 \\ & 15 & 60 & 900 & 225 & 3600 \\ & 18 & 50 & 900 & 324 & 2500 \\ & 25 & 41 & 1025 & 625 & 1681 \\ & 22 & 40 & 880 & 484 & 1600 \\ & 18 & 56 & 1008 & 324 & 3136 \\ & 30 & 45 & 1350 & 900 & 2025 \\ Sum= & 140 & 357 & 6843 & 3026 & 18767 \end{matrix}

mean:xˉ=xin=1407=20,yˉ=yin=3577=51mean: \bar{x}={\sum x_i\over n}={140\over 7}=20, \bar{y}={\sum y_i\over n}={357\over 7}=51

SSxx=i=1nxi21n(i=1nxi)2=SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-{1\over n}\big(\displaystyle\sum_{i=1}^nx_i\big)^2==3026(140)27=226=3026-{(140)^2\over 7}=226

SSyy=i=1nyi21n(i=1nyi)2=SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-{1\over n}\big(\displaystyle\sum_{i=1}^ny_i\big)^2==18767(357)27=560=18767-{(357)^2\over 7}=560

SSxy=i=1nxiyi1n(i=1nxi)(i=1nyi)=SS_{xy}=\displaystyle\sum_{i=1}^nx_iy_i-{1\over n}\big(\displaystyle\sum_{i=1}^nx_i\big)\big(\displaystyle\sum_{i=1}^ny_i\big)==6843140(357)7=297=6843-{140(357)\over 7}=-297

1) Find the equaition line y on x 

B=SSxySSxx=2972261.314159B={SS_{xy} \over SS_{xx}}={-297 \over 226}\approx-1.314159

A=yˉBxˉ=51(297226)(20)77.283186A=\bar{y}-B\cdot\bar{x}=51-({-297 \over 226})(20)\approx77.283186

y=77.2831861.314159xy=77.283186-1.314159x

2) Find the equaition line x on y 


M=SSxySSyy=2975600.530357M={SS_{xy} \over SS_{yy}}={-297 \over 560}\approx-0.530357

N=xˉMyˉ=20(297560)(51)47.048214N=\bar{x}-M\cdot\bar{y}=20-({-297 \over 560})(51)\approx47.048214

x=47.0482140.530357yx=47.048214-0.530357y

3) Find the demand when price is 35


y=77.2831861.314159(35)=31.3 (kg)y=77.283186-1.314159(35)=31.3 \ (kg)

4) Find the price when demand is 25.


x=47.0482140.530357(25)=33.79 (RS)x=47.048214-0.530357(25)=33.79 \ (RS)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS