Question #109990
If log10X is normally distributed with mean 4 and variance 4, find the probability of 1.202<X<83180000.(Given that log10 1202=3.08, log10 8310=3.92 )
1
Expert's answer
2020-04-20T04:37:35-0400

Let require probability, P=P(1.202<X<83180000)P=P( 1.202<X<83180000)


P(1.202<X<83180000)P( 1.202<X<83180000) is convert to log10X\log_{10}X.

Then ,

probability(P)(P) is P(log101.202<log10X<log1083180000)P( \log_{10}{1.202}<\log_{10}X<\log_{10}83180000)


log101.202=log1012021000=log101202log101000\log_{10}{1.202}=\log_{10}{\frac{1202}{1000}}=\log_{10}{1202}-\log_{10}{1000}\\

=3.083=0.08=3.08-3=0.08

log1083180000=log108318104\log_{10}{83180000}=\log_{10}{8318*10^4}

=log108318+log1010000=\log_{10}{8318}+\log_{10}{10000}\\

=3.92+4=3.92+4

=7.92=7.92


P=P(0.08<log10X<7.92)P=P(0.08<\log_{10}X<7.92)

Then normalize the values,

z=xmeanstandard deviationz1=0.0842=1.96z2=7.9242=1.96z=\frac{x-mean}{standard\ deviation}\\ z_1=\frac{0.08-4}{2}=-1.96\\ z_2=\frac{7.92-4}{2}=1.96\\

P=P(1.96<z<1.96)P=P(1.96<z<0)+P(0<z<1.96)P=2P(0<z<1.96)P=P(-1.96<z<1.96)\\ P=P(-1.96<z<0)+P(0<z<1.96)\\ P=2*P(0<z<1.96)\\

using calculator or table,

P=20.475P=0.95P=2*0.475\\ \bold{P=0.95}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS