Let require probability, P=P(1.202<X<83180000)
P(1.202<X<83180000) is convert to log10X.
Then ,
probability(P) is P(log101.202<log10X<log1083180000)
log101.202=log1010001202=log101202−log101000
=3.08−3=0.08
log1083180000=log108318∗104
=log108318+log1010000
=3.92+4
=7.92
P=P(0.08<log10X<7.92)
Then normalize the values,
z=standard deviationx−meanz1=20.08−4=−1.96z2=27.92−4=1.96
P=P(−1.96<z<1.96)P=P(−1.96<z<0)+P(0<z<1.96)P=2∗P(0<z<1.96)
using calculator or table,
P=2∗0.475P=0.95
Comments