Let require probability, "P=P( 1.202<X<83180000)"
"P( 1.202<X<83180000)" is convert to "\\log_{10}X".
Then ,
probability"(P)" is "P( \\log_{10}{1.202}<\\log_{10}X<\\log_{10}83180000)"
"\\log_{10}{1.202}=\\log_{10}{\\frac{1202}{1000}}=\\log_{10}{1202}-\\log_{10}{1000}\\\\"
"=3.08-3=0.08"
"\\log_{10}{83180000}=\\log_{10}{8318*10^4}"
"=\\log_{10}{8318}+\\log_{10}{10000}\\\\"
"=3.92+4"
"=7.92"
"P=P(0.08<\\log_{10}X<7.92)"
Then normalize the values,
"z=\\frac{x-mean}{standard\\ deviation}\\\\\nz_1=\\frac{0.08-4}{2}=-1.96\\\\\nz_2=\\frac{7.92-4}{2}=1.96\\\\"
"P=P(-1.96<z<1.96)\\\\\nP=P(-1.96<z<0)+P(0<z<1.96)\\\\\nP=2*P(0<z<1.96)\\\\"
using calculator or table,
"P=2*0.475\\\\\n\\bold{P=0.95}"
Comments
Leave a comment