C l a s s l i m i t s f x f x C u m u l a t i v e f r e q u e n c y , F 0 − 19 4 9.5 38 4 20 − 29 9 24.5 220.5 13 30 − 39 18 34.5 621 31 40 − 49 26 44.5 1157 57 50 − 59 17 54.5 926.5 74 60 − 69 6 64.5 387 80 T o t a l 80 3350 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
Class\ limits & f & x & fx & \begin{gathered}
Cumulative \\
frequency, F
\end{gathered} \\ \hline
0-19 & 4 & 9.5 & 38 & 4 \\ \hline
20-29 & 9 & 24.5 & 220.5 & 13 \\ \hline
30-39 & 18 & 34.5 & 621 & 31 \\ \hline
40-49 & 26 & 44.5 & 1157 & 57 \\ \hline
50-59 & 17 & 54.5 & 926.5 & 74 \\ \hline
60-69 & 6 & 64.5 & 387 & 80 \\
\hdashline
Total & 80 & & 3350
\end{array} Cl a ss l imi t s 0 − 19 20 − 29 30 − 39 40 − 49 50 − 59 60 − 69 T o t a l f 4 9 18 26 17 6 80 x 9.5 24.5 34.5 44.5 54.5 64.5 f x 38 220.5 621 1157 926.5 387 3350 C u m u l a t i v e f re q u e n cy , F 4 13 31 57 74 80 1.
M e a n = x ˉ = ∑ f x ∑ f = 3350 80 = 41.875 Mean=\bar{x}={\sum fx \over \sum f}={3350 \over 80}=41.875 M e an = x ˉ = ∑ f ∑ f x = 80 3350 = 41.875 2. 80 / 2 = 40 80/2=40 80/2 = 40
From the column of cumulative frequency, we find that the 40th observation lies in the class 40-49.
The median class is 39.5 − 49.5 39.5-49.5 39.5 − 49.5
L = 39.5 , n = 80 , F = 31 , f = 26 , c l a s s l e n g t h = c = 10 L=39.5, n=80, F=31,f=26, class\ length=c=10 L = 39.5 , n = 80 , F = 31 , f = 26 , c l a ss l e n g t h = c = 10
M e d i a n = M = L + n 2 − F f ⋅ c = Median=M=L+{{n \over 2}-F\over f}\cdot c= M e d ian = M = L + f 2 n − F ⋅ c =
= 39.5 + 80 2 − 31 26 ⋅ 10 ≈ 42.9615 =39.5+{{80 \over 2}- 31\over 26}\cdot 10\approx42.9615 = 39.5 + 26 2 80 − 31 ⋅ 10 ≈ 42.9615 3. Here class length is not equal for each data. So mode can not be obtained directly.
M o d e = Z = 3 M − 2 x ˉ = Mode=Z=3M-2\bar{x}= M o d e = Z = 3 M − 2 x ˉ =
= 3 ( 42.915 ) − 2 ( 41.875 ) ≈ 45.1345 =3(42.915)-2(41.875)\approx45.1345 = 3 ( 42.915 ) − 2 ( 41.875 ) ≈ 45.1345 4.
A = 44.5 , h = 1 , d = x − A h A=44.5, h=1, d={x-A \over h} A = 44.5 , h = 1 , d = h x − A
S a m p l e v a r i a n c e = S 2 = ∑ f d 2 − ( ∑ f d ) 2 n n − 1 ⋅ h 2 Sample\ variance=S^2={\sum fd^2-{(\sum fd)^2 \over n} \over n-1}\cdot h^2 S am pl e v a r ian ce = S 2 = n − 1 ∑ f d 2 − n ( ∑ fd ) 2 ⋅ h 2
∑ f d = 4 ( 9.5 − 44.5 ) + 9 ( 24.5 − 44.5 ) + 18 ( 34.5 − 44.5 ) + \sum fd=4(9.5-44.5)+9(24.5-44.5)+18(34.5-44.5)+ ∑ fd = 4 ( 9.5 − 44.5 ) + 9 ( 24.5 − 44.5 ) + 18 ( 34.5 − 44.5 ) +
+ 26 ( 44.5 − 44.5 ) + 17 ( 54.5 − 44.5 ) + 6 ( 534.5 − 44.5 ) = − 210 +26(44.5-44.5)+17(54.5-44.5)+6(534.5-44.5)=-210 + 26 ( 44.5 − 44.5 ) + 17 ( 54.5 − 44.5 ) + 6 ( 534.5 − 44.5 ) = − 210
∑ f d 2 = 4 ( 9.5 − 44.5 ) 2 + 9 ( 24.5 − 44.5 ) 2 + 18 ( 34.5 − 44.5 ) 2 + \sum fd^2=4(9.5-44.5)^2+9(24.5-44.5)^2+18(34.5-44.5)^2+ ∑ f d 2 = 4 ( 9.5 − 44.5 ) 2 + 9 ( 24.5 − 44.5 ) 2 + 18 ( 34.5 − 44.5 ) 2 +
+ 26 ( 44.5 − 44.5 ) 2 + 17 ( 54.5 − 44.5 ) 2 + 6 ( 534.5 − 44.5 ) 2 = 14400 +26(44.5-44.5)^2+17(54.5-44.5)^2+6(534.5-44.5)^2=14400 + 26 ( 44.5 − 44.5 ) 2 + 17 ( 54.5 − 44.5 ) 2 + 6 ( 534.5 − 44.5 ) 2 = 14400
S 2 = 14400 − ( − 210 ) 2 80 80 − 1 ⋅ ( 1 ) 2 ≈ 175.3006 S^2={14400-{(-210)^2 \over 80} \over 80-1}\cdot (1)^2\approx175.3006 S 2 = 80 − 1 14400 − 80 ( − 210 ) 2 ⋅ ( 1 ) 2 ≈ 175.3006
S t a n d a r d d e v i a t i o n = S = S 2 = Standard\ deviation=S=\sqrt{S^2}= St an d a r d d e v ia t i o n = S = S 2 =
= 175.3006 ≈ 13.2401 =\sqrt{175.3006}\approx13.2401 = 175.3006 ≈ 13.2401
5.
M e a n < M e d i a n < M o d e . Mean<Median<Mode. M e an < M e d ian < M o d e .
The distribution is left-skewed. The company has not sufficient talent to adequately plan its successors.
6. Type of Variable: Interval/Ratio (skewed)
Best measure of central tendency: Median
Comments