a. Find the value of C.
"1=C\\lim\\limits_{A\\rarr\\infin}\\big[-2xe^{-x\/2}-4e^{-x\/2}\\big]\\begin{matrix}\n A\\\\\n 0\n\\end{matrix}="
"=C(-0-0+0+4)=4C=>C={1\\over 4}"
"f(x)= \\begin{cases}\n {1\\over 4}xe^{-x\/2} & x>0 \\\\\n 0 & x\\leq 0\n\\end{cases}"
b. Find the mean of X.
"\\int{x^2e^{-x\/2}}dx=-2x^2 e^{-x\/2}+4\\int{xe^{-x\/2}}dx=""=-2x^2 e^{-x\/2}-8xe^{-x\/2}-16e^{-x\/2}+c_2"
"mean=E(X)=""={1\\over 4}\\lim\\limits_{A\\rarr\\infin}\\big[-2x^2 e^{-x\/2}-8xe^{-x\/2}-16e^{-x\/2}\\big]\\begin{matrix}\n A\\\\\n 0\n\\end{matrix}=""={1\\over 4}(-0-0-0+0+0+16)=4"
c. Find the 2nd Quartile of X.
"\\displaystyle\\int_{0}^x {1\\over 4}te^{-t\/2}dt={1\\over 4}\\big[-2te^{-t\/2}-4e^{-t\/2}\\big]\\begin{matrix}\n x\\\\\n 0\n\\end{matrix}="
"={1\\over 4}(-2xe^{-x\/2}-4e^{-x\/2}+0+4)"
"F(0)=0"
Then
"F(x_m)={1\\over 2}=> -{1\\over 2}x_me^{-x_m\/2}-e^{-x_m\/2}+1={1\\over 2}=>"
"=> (x_m+2)e^{-x_m\/2}=1"
"median=2^{nd}Quartile=x_m\\approx3.357"
d. Also, find the standard deviation of X.
"E(X^2)=\\displaystyle\\int_{-\\infin}^\\infin x^2f(x)dx="
"=\\displaystyle\\int_{0}^\\infin {1\\over 4}x^3 e^{-x\/2}dx"
"\\int{x^3e^{-x\/2}}dx=-2x^3 e^{-x\/2}+6\\int{x^2e^{-x\/2}}dx="
"=-2x^3 e^{-x\/2}+6(-2x^2 e^{-x\/2}-8xe^{-x\/2}-16e^{-x\/2})="
"=-2x^3 e^{-x\/2}-12x^2 e^{-x\/2}-48xe^{-x\/2}-96e^{-x\/2}"
"E(X^2)={1\\over 4}\\lim\\limits_{A\\rarr\\infin}\\big[-2x^3 e^{-x\/2}-12x^2 e^{-x\/2}-48xe^{-x\/2}-96e^{-x\/2}\\big]\\begin{matrix}\n A\\\\\n 0\n\\end{matrix}="
"={1\\over 4}(-0-0-0+0+0+96)=24"
"\\sigma=\\sqrt{8}=2\\sqrt{2}\\approx2.8284"
Comments
The equation F(x_m)=1/2 is solved for x_m>0. First step is to plot the graph of the function (x+2)exp(-x/2)-1=0 and determine the point in segment [a,b]=[3,4], where the graph crosses the x-axis. Further, any numerical method can be applied to determine the root x_m with a higher accuracy. For example, the bisection method will help to do it. After several steps one gets x_m=3.357, though one can continue the algorithm of the bisection method if necessary.
(x m +2)e −x m /2 =1 please show more steps in here
Dear Tara, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Wowww greattttt
Leave a comment