Question #107493
X has the following PDF:
f(x)={Cxe^(-x/2) , x>0 and 0 , x=<0 }
a. Find the value of C.
b. Find the mean of X.
c. Find the 2nd Quartile of X.
d. Also, find the standard deviation of X.
1
Expert's answer
2020-04-01T16:22:59-0400
f(x)={Cxex/2x>00x0f(x)= \begin{cases} Cxe^{-x/2} & x>0 \\ 0 & x\leq 0 \end{cases}

a. Find the value of C. 


1=f(x)dx=0Cxex/2dx=1=\displaystyle\int_{-\infin}^\infin f(x)dx=\displaystyle\int_{0}^\infin Cxe^{-x/2}dx==limA(0Cxex/2dx)=\lim\limits_{A\rarr\infin}\bigg(\displaystyle\int_{0}^\infin Cxe^{-x/2}dx\bigg)


xex/2dx=2xex/2+2ex/2dx=\int{xe^{-x/2}}dx=-2xe^{-x/2}+2\int{e^{-x/2}}dx==2xex/24ex/2+c1=-2xe^{-x/2}-4e^{-x/2}+c_1

1=ClimA[2xex/24ex/2]A0=1=C\lim\limits_{A\rarr\infin}\big[-2xe^{-x/2}-4e^{-x/2}\big]\begin{matrix} A\\ 0 \end{matrix}=

=C(00+0+4)=4C=>C=14=C(-0-0+0+4)=4C=>C={1\over 4}

f(x)={14xex/2x>00x0f(x)= \begin{cases} {1\over 4}xe^{-x/2} & x>0 \\ 0 & x\leq 0 \end{cases}

b. Find the mean of X. 


mean=E(X)=xf(x)dx=mean=E(X)=\displaystyle\int_{-\infin}^\infin xf(x)dx==014x2ex/2dx=\displaystyle\int_{0}^\infin {1\over 4}x^2 e^{-x/2}dx

x2ex/2dx=2x2ex/2+4xex/2dx=\int{x^2e^{-x/2}}dx=-2x^2 e^{-x/2}+4\int{xe^{-x/2}}dx==2x2ex/28xex/216ex/2+c2=-2x^2 e^{-x/2}-8xe^{-x/2}-16e^{-x/2}+c_2

mean=E(X)=mean=E(X)==14limA[2x2ex/28xex/216ex/2]A0=={1\over 4}\lim\limits_{A\rarr\infin}\big[-2x^2 e^{-x/2}-8xe^{-x/2}-16e^{-x/2}\big]\begin{matrix} A\\ 0 \end{matrix}==14(000+0+0+16)=4={1\over 4}(-0-0-0+0+0+16)=4

c. Find the 2nd Quartile of X. 


F(x)=xf(t)dtF(x)=\displaystyle\int_{-\infin}^x f(t)dt

0x14tet/2dt=14[2tet/24et/2]x0=\displaystyle\int_{0}^x {1\over 4}te^{-t/2}dt={1\over 4}\big[-2te^{-t/2}-4e^{-t/2}\big]\begin{matrix} x\\ 0 \end{matrix}=

=14(2xex/24ex/2+0+4)={1\over 4}(-2xe^{-x/2}-4e^{-x/2}+0+4)

F(0)=0F(0)=0

Then


F(x)={12xex/2ex/2+1x>00x0F(x)= \begin{cases} -{1\over 2}xe^{-x/2}-e^{-x/2}+1 & x>0 \\ 0 & x\leq 0 \end{cases}

F(xm)=12=>12xmexm/2exm/2+1=12=>F(x_m)={1\over 2}=> -{1\over 2}x_me^{-x_m/2}-e^{-x_m/2}+1={1\over 2}=>

=>(xm+2)exm/2=1=> (x_m+2)e^{-x_m/2}=1



median=2ndQuartile=xm3.357median=2^{nd}Quartile=x_m\approx3.357


d. Also, find the standard deviation of X.


Var(X)=σ2=E(X2)[E(X)]2Var(X)=\sigma^2=E(X^2)-[E(X)]^2

E(X2)=x2f(x)dx=E(X^2)=\displaystyle\int_{-\infin}^\infin x^2f(x)dx=

=014x3ex/2dx=\displaystyle\int_{0}^\infin {1\over 4}x^3 e^{-x/2}dx

x3ex/2dx=2x3ex/2+6x2ex/2dx=\int{x^3e^{-x/2}}dx=-2x^3 e^{-x/2}+6\int{x^2e^{-x/2}}dx=

=2x3ex/2+6(2x2ex/28xex/216ex/2)==-2x^3 e^{-x/2}+6(-2x^2 e^{-x/2}-8xe^{-x/2}-16e^{-x/2})=

=2x3ex/212x2ex/248xex/296ex/2=-2x^3 e^{-x/2}-12x^2 e^{-x/2}-48xe^{-x/2}-96e^{-x/2}

E(X2)=14limA[2x3ex/212x2ex/248xex/296ex/2]A0=E(X^2)={1\over 4}\lim\limits_{A\rarr\infin}\big[-2x^3 e^{-x/2}-12x^2 e^{-x/2}-48xe^{-x/2}-96e^{-x/2}\big]\begin{matrix} A\\ 0 \end{matrix}=

=14(000+0+0+96)=24={1\over 4}(-0-0-0+0+0+96)=24


Var(X)=σ2=E(X2)[E(X)]2=24(4)2=8Var(X)=\sigma^2=E(X^2)-[E(X)]^2=24-(4)^2=8

σ=8=222.8284\sigma=\sqrt{8}=2\sqrt{2}\approx2.8284


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
02.04.20, 11:48

The equation F(x_m)=1/2 is solved for x_m>0. First step is to plot the graph of the function (x+2)exp(-x/2)-1=0 and determine the point in segment [a,b]=[3,4], where the graph crosses the x-axis. Further, any numerical method can be applied to determine the root x_m with a higher accuracy. For example, the bisection method will help to do it. After several steps one gets x_m=3.357, though one can continue the algorithm of the bisection method if necessary.

mari
02.04.20, 11:25

(x m ​ +2)e −x m ​ /2 =1 please show more steps in here

Assignment Expert
01.04.20, 23:33

Dear Tara, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Tara
01.04.20, 23:28

Wowww greattttt

LATEST TUTORIALS
APPROVED BY CLIENTS