"1) H_0: p=0.3, H_1: p\\neq 0.3 \\text{ (2-tailed test)}"
"pN=(0.3)175=5.25>5\\\\\n(1-p)N=(0.7)175>5"
So we will use z-test.
"z-value=1.96" ("\\alpha=0.05)"
If test statistic ">1.96" or "<-1.96" we shall reject "H_0." Otherwise we accept "H_0."
"z=\\frac{p^*-p}{\\sqrt{\\frac{p(1-p)}{N}}}=\\frac{\\frac{63}{175}-0.3}{\\sqrt{\\frac{(0.3)(0.7)}{175}}}\\approx 1.732\\text{ --- test statistic}."
So we accept "H_0."
The claim of the cell phone company is not reasonable.
2) "H_0: a=a_0=4, H_1: a<a_0=4."
We shall use a random variable "T=\\frac{(\\overline{x}-a_0)\\sqrt{n}}{s}" and t-test;
"k=n-1=36-1=35\\text{ --- degree of freedom}."
"t_{cr}=t_{cr}(\\alpha;k)=t_{cr}(0.02;35)\\approx 2.1332\\text{ (one-sided)}.\\\\\nt_{obs}=\\frac{(3.74-4)\\sqrt{36}}{1.21}\\approx -1.289.\\\\\nt_{obs}=-1.289>-t_{cr}=-2.1332."
So "t_{obs}\\text{ is not in the critical region } (-\\infty,-2.1332)\\text{ and we accept } H_0."
Association's claim is not reasonable.
Comments
Leave a comment