A random variable "X" has the following probability function:
(i) Find "k"
For a discrete probability distribution of a random variable "\\displaystyle\\sum_{i=1}^nP(X=x_i)=1." Then
Since "k\\geq0," we take "k=\\dfrac{1}{10}."
(ii) Evaluate "P(X<6),\\ P(X\\geq6)" and "P(0<X<5)"
"P(X<6)=P(X=0)+P(X=1)+P(X=2)+""+P(X=3)+P(X=4)+P(X=5)=""1-P(X=6)-P(X=7)=""=1-2(0.1)^2-(7(0.1)^2+0.1)=0.81""P(X\\geq6)=P(X=6)+P(X=7)=""=2(0.1)^2(7(0.1)^2+0.1)=0.19"
(iii) If "P(X\\leq a)>{1 \\over 2}," find the minimum value of "a"
"P(X\\leq3)=0+0.1+0.2+0.2=0.5"
"P(X\\leq4)=0+0.1+0.2+0.2+0.3=0.8>0.5"
The minimum value of "a" is "4."
(iv) Determine the distribution function of "X."
"F(0)=P(X\\leq0)=0"
"F(1)=P(X\\leq1)=0+k=k=0.1"
"F(2)=P(X\\leq2)=0+k+2k=3k=0.3"
"F(3)=P(X\\leq3)=0+k+2k+2k=5k=0.5"
"F(4)=P(X\\leq4)=0+k+2k+2k+3k=8k=0.8"
"F(5)=P(X\\leq5)=0+k+2k+2k+3k+k^2="
"=8k+k^2=0.81"
"F(6)=P(X\\leq6)=0+k+2k+2k+3k+k^2+2k^2="
"=8k+3k^2=0.83"
"F(7)=P(X\\leq7)=10k^2+9k=1"
Comments
Leave a comment