Q1
Given that "\\bar{X}=100, \\sigma=9, n=30"
"95\\%:z_{\\alpha\/2}=1.96""CI=(100-1.96{9 \\over \\sqrt{30}},\\ 100+1.96{9 \\over \\sqrt{30}})""CI=(96.7794,\\ 103.2206)"
"99\\%:z_{\\alpha\/2}=2.576""CI=(100-2.576{9 \\over \\sqrt{30}},\\ 100+2.576{9 \\over \\sqrt{30}})""CI=(95.7672,\\ 104.2328)"
Correct:
(4) A and B
Q2
If sample size stays the same, what happens to confidence interval estimate if level of confidence increases
Correct:
(2) become wider
Q3
"n=60:\\ CI=(100-1.96{9 \\over \\sqrt{60}},\\ 100+1.96{9 \\over \\sqrt{60}})""CI=(97.7227,\\ 102.2773)"
"n=100:\\ CI=(100-1.96{9 \\over \\sqrt{100}},\\ 100+1.96{9 \\over \\sqrt{100}})""CI=(98.2360,\\ 101.7640)"
"n=200:\\ CI=(100-1.96{9 \\over \\sqrt{200}},\\ 100+1.96{9 \\over \\sqrt{200}})""CI=(98.7527,\\ 101.2473)"
"n=500:\\ CI=(100-1.96{9 \\over \\sqrt{500}},\\ 100+1.96{9 \\over \\sqrt{500}})""CI=(99.2111,\\ 100.7889)"
Which is incorrect
(5) None
Q4
If level of significance stays the same, what happens to confidence interval estimate if sample size increases
(3) become narrower
Comments
Leave a comment