Answer to Question #104663 in Statistics and Probability for Amra Musharraf

Question #104663
Calculate the standard deviation and mean deviation from mean if the frequency function f(x) has the form: f(x)={3+2x/18,for2≤x≤4; 0 otherwise
1
Expert's answer
2020-03-21T17:24:15-0400

The frequency function f(x) has the form:


f(x)={3+2x18,for 2x40,otherwise f(x) = \begin{cases} {3+2x \over 18}, &\text{for } 2\leq x\leq4 \\ 0, &\text{otherwise } \end{cases}

f(x)dx=243+2x18dx=[3x+x218]42=\displaystyle\int_{-\infin}^\infin f(x)dx=\displaystyle\int_{2}^4 {3+2x \over 18}dx=\bigg[{3x+x^2 \over 18}\bigg]\begin{matrix} 4 \\ 2 \end{matrix}==3(4)+(4)2183(2)+(2)218=1={3(4)+(4)^2 \over 18}-{3(2)+(2)^2 \over 18}=1

μ=E(X)=xf(x)dx=24x3+2x18dx=\mu=E(X)=\displaystyle\int_{-\infin}^\infin xf(x)dx=\displaystyle\int_{2}^4 x{3+2x \over 18}dx=

=[3x22+2x3318]42=9(4)2+4(4)31089(2)2+4(2)3108=8327=\bigg[{{3x^2 \over 2}+{2x^3 \over 3} \over 18}\bigg]\begin{matrix} 4 \\ 2 \end{matrix}={9(4)^2+4(4)^3 \over 108}-{9(2)^2+4(2)^3 \over 108}={83 \over 27}

E(X2)=x2f(x)dx=24x23+2x18dx=E(X^2)=\displaystyle\int_{-\infin}^\infin x^2f(x)dx=\displaystyle\int_{2}^4 x^2{3+2x \over 18}dx=

=[3x33+2x4418]42=2(4)3+(4)4362(2)3+(2)436=889=\bigg[{{3x^3 \over 3}+{2x^4 \over 4} \over 18}\bigg]\begin{matrix} 4 \\ 2 \end{matrix}={2(4)^3+(4)^4 \over 36}-{2(2)^3+(2)^4 \over 36}={88 \over 9}

Var(X)=σ2=E(X2)(E(X))2=Var(X)=\sigma^2=E(X^2)-(E(X))^2=

=889(8327)2=239729={88 \over 9}-\big({83 \over 27}\big)^2={239 \over 729}


μ=E(X)=8327\mu=E(X)={83 \over 27}

Var(X)=σ2=239729Var(X)=\sigma^2={239 \over 729}

σX=Var(X)=2397290.5726\sigma_X=\sqrt{Var(X)}=\sqrt{{239 \over 729}}\approx0.5726

MD=(xμ)f(x)dx=MD=\displaystyle\int_{-\infin}^\infin (x-\mu)f(x)dx=

=24(x8327)3+2x18dx==\displaystyle\int_{2}^4 (x-{83 \over 27}){3+2x \over 18}dx=

=[36x385x2498x972]42=0=\bigg[{36x^3-85x^2-498x\over 972}\bigg]\begin{matrix} 4 \\ 2 \end{matrix}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment