Question #104475
Let X and Y be jointly distributed with p.d.f:
f XY (x,y)={1/4(1+xy),|x|<1,|y|<1; 0 otherwise
Show that X and Y are not independent by X^2 and Y^2 are independent.
1
Expert's answer
2020-03-09T13:53:32-0400

The intervals for x and y is (-1,1). X and Y are independent if E(XY)=E(X)×E(Y)E(XY)=E(X)×E(Y)

E(X)=(X4(1+XY))dxdyX,Y(1,1)E(X)=\iint(\frac{X}{4}(1+XY))dx dy X,Y\isin(-1,1)

=(X28+X3Y12)dyX,Y(1,1)=\intop(\frac{X^2}{8}+\frac{X^3Y}{12})dy X,Y\isin(-1,1)

=X2Y8+X3Y224.X,Y(1,1)=\frac{X^2Y}{8}+\frac{X^3Y^2}{24}. X,Y\isin(-1,1)

=Y8+Y224Y8+Y224,X(1,1)=\frac{Y}{8}+\frac{Y^2}{24}-\frac{Y}{8}+\frac{Y^2}{24}, X\isin(-1,1)

=124+124124124=0=\frac{1}{24}+\frac{1}{24}-\frac{1}{24}-\frac{1}{24}=0

Since both X and Y have same domain and are at same position on the distribution, E(X)=E(Y)=0E(X)=E(Y) =0

E(XY)=(XY4(1+XY))dxdy,X,Y(1,1)E(XY)=\iint(\frac{XY}{4}(1+XY))dx dy, X,Y\isin(-1,1)

=(X2Y8+X3Y212)dy,X,Y(1,1)=\intop(\frac{X^2Y}{8}+\frac{X^3Y^2}{12})dy ,X,Y\isin(-1,1)

=X2Y216+X3Y336X,Y(1,1)=\frac{X^2Y^2}{16}+\frac{X^3Y^3}{36}X,Y\isin(-1,1)

=Y216+Y336Y216+Y336,Y(1,1)=\frac{Y^2}{16}+\frac{Y^3}{36}-\frac{Y^2}{16}+\frac{Y^3}{36} , Y\isin(-1,1)

=136+136+136+136=19=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{1}{9}

Since E(XY) is not equal to the product of E(X) and E(Y), X and Y are not independent.

E(X2)=(X24(1+XY))dxdyX,Y(1,1)E(X^2)=\iint(\frac{X^2}{4}(1+XY))dx dy X,Y\isin(-1,1)

=(X312+X4Y16)dyX,Y(1,1)=\intop(\frac{X^3}{12}+\frac{X^4Y}{16})dy X,Y\isin(-1,1)

=X3Y12+X4Y232X,Y(1,1)=\frac{X^3Y}{12}+\frac{X^4Y^2}{32}X,Y\isin(-1,1)

=Y12+Y232+Y12Y232,Y(1,1)=\frac{Y}{12}+\frac{Y^2}{32}+\frac{Y}{12}-\frac{Y^2}{32},Y\isin(-1,1)

=112+112+112+112=13=\frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{3}

Similarly, since both X and Y have same domain and are at same position on the distribution, E(X2)=E(Y2)=13E(X^2)=E(Y^2)=\frac{1}{3}

E(X2Y2)=(X2Y24(1+XY))dxdy,X,Y(1,1)E(X^2Y^2)=\iint(\frac{X^2Y^2}{4}(1+XY))dx dy, X,Y\isin(-1,1)

=(X3Y212+X4Y316)dy,X,Y(1,1)=\intop(\frac{X^3Y^2}{12}+\frac{X^4Y^3}{16})dy ,X,Y\isin(-1,1)

=X3Y336+X4Y464,X,Y(1,1)=\frac{X^3Y^3}{36}+\frac{X^4Y^4}{64} ,X,Y\isin(-1,1)

=Y336+Y464+Y336Y464,Y(1,1)=\frac{Y^3}{36}+\frac{Y^4}{64}+\frac{Y^3}{36}-\frac{Y^4}{64} ,Y\isin(-1,1)

=136+136+136+136=19=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{1}{9}

E(X2)×E(Y2)=13×13=19E(X^2)×E(Y^2)=\frac{1}{3}×\frac{1}{3}=\frac{1}{9}

Since the product of E(X2)E(X^2) and E(Y2)E(Y^2) is equal to E(X2Y2),E(X^2Y^2), X2X^2 and Y2Y^2 are independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS