The intervals for x and y is (-1,1). X and Y are independent if E(XY)=E(X)×E(Y)
E(X)=∬(4X(1+XY))dxdyX,Y∈(−1,1)
=∫(8X2+12X3Y)dyX,Y∈(−1,1)
=8X2Y+24X3Y2.X,Y∈(−1,1)
=8Y+24Y2−8Y+24Y2,X∈(−1,1)
=241+241−241−241=0
Since both X and Y have same domain and are at same position on the distribution, E(X)=E(Y)=0
E(XY)=∬(4XY(1+XY))dxdy,X,Y∈(−1,1)
=∫(8X2Y+12X3Y2)dy,X,Y∈(−1,1)
=16X2Y2+36X3Y3X,Y∈(−1,1)
=16Y2+36Y3−16Y2+36Y3,Y∈(−1,1)
=361+361+361+361=91
Since E(XY) is not equal to the product of E(X) and E(Y), X and Y are not independent.
E(X2)=∬(4X2(1+XY))dxdyX,Y∈(−1,1)
=∫(12X3+16X4Y)dyX,Y∈(−1,1)
=12X3Y+32X4Y2X,Y∈(−1,1)
=12Y+32Y2+12Y−32Y2,Y∈(−1,1)
=121+121+121+121=31
Similarly, since both X and Y have same domain and are at same position on the distribution, E(X2)=E(Y2)=31
E(X2Y2)=∬(4X2Y2(1+XY))dxdy,X,Y∈(−1,1)
=∫(12X3Y2+16X4Y3)dy,X,Y∈(−1,1)
=36X3Y3+64X4Y4,X,Y∈(−1,1)
=36Y3+64Y4+36Y3−64Y4,Y∈(−1,1)
=361+361+361+361=91
E(X2)×E(Y2)=31×31=91
Since the product of E(X2) and E(Y2) is equal to E(X2Y2), X2 and Y2 are independent.
Comments