Question #104435
How do we solve point estimation using
1)methods of moment
2)method of maximum likelihood estimation
1
Expert's answer
2020-03-03T16:32:18-0500

Method of moments;

(i) Equate the first sample moments about the origin M1 = xin=xˉ\frac {\sum x i}{n}=\bar x  to the first theoretical moment (E(X))

(ii) Equate the second sample moments about the mean to the second theoretical moment about the mean E[(Xμ)2]E[(X-\mu)^{2}]

(iii) Continue equating corresponding sample moment about the mean Mk with the corresponding theoretical moment about the mean until you have equation equal to the number of parameters.E[(Xμ)k]E[(X-\mu)^{k}] k=3,4, ...

(iv) Solve for the parameters and the resulting values are the method of moment estimators.

Method of Maximum Likelihood Estimation

Suppose having a random sample X1,X2 ,......,Xn where it is assumed the probability distribution depends on the same unknown parameter θ\theta .

We find a point estimator  u(X1,X2, ......,X) such that u(X1,X2, ...,X) is  a good point estimate of the unknown parameter.

Let X1,X2 ,...,Xn be a random sample of a distribution depending on one or more unknown  parameters  θ1,θ2,...,θm\theta _{1},\theta_{2},...,\theta_{m} with probability density  or mass functionf(xi;θ1,θ2,...,θm)f(x_{i};\theta_{1}, \theta_{2},...,\theta_{m}) .  Suppose (θ1,θ2,...,θm)(\theta_{1}, \theta_{2},...,\theta_{m}) is restricted to the parameter space Ω\Omega . Then

(i) When regarded function ofθ1,θ2,...,θm\theta_{1},\theta_{2}, ...,\theta_{m} ,the joint probability density or mass function in (x1,x2,...,xn)(x_{1},x_{2},...,x_{n}):

L(θ1,θ2,...,θm)=f(xi;θ1,θ2,...,θm)[(θ1,θ2,...,θm)inΩ]L(\theta_{1},\theta_{2},...,\theta_{m})=\prod f(x_{i};\theta_{1}, \theta_{2},...,\theta_{m}) [(\theta_{1},\theta_{2}, ..., \theta_{m})in \Omega] is the likelihood function

(ii)if:

[u1(x1,x2,..xn),u2(x1,x2,...,xn),...,um(x1,x2,...,xm)][u_{1}(x_1,x_{2},..x_n),u_2(x_1,x_2, ...,x_n),...,u_m(x_1,x_2,...,x_m)] is the m-tuple that maximizes the likelihood function ,then :

θ^=ui(x1,x2,....,xn)\hat \theta=u_i(x_1, x_2,....,x_n)

is the maximum likelihood estimator of  θi\theta_i for i=1,2,..,m

(iii)The corresponding observed values in [u1(x1,x2,..xn),u2(x1,x2,...,xn),...,um(x1,x2,...,xm)][u_{1}(x_1,x_{2},..x_n),u_2(x_1,x_2, ...,x_n),...,u_m(x_1,x_2,...,x_m)] are the maximum likelihood estimates of θi\theta_i for i=1,2,..,m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS