Question #103693
the average number of articles produced by two machines per day are 200 and 250 with standard deviation of 20 and 25 respectively on the basis of 25 days production. Can you regard both the machines equally efficient at 1% level of significance?
1
Expert's answer
2020-02-26T10:19:13-0500

We have


xs=200,ys=250,σxs=20,σys=25,n=m=25,α=0.01.H0:xp=ypH1:xpyp\overline{x_s}=200, \overline{y_s}=250, \overline{\sigma_{x_s}}=20, \overline{\sigma_{y_s}}=25,\\ n=m=25, \alpha=0.01.\\ H_0: \overline{x_p}=\overline{y_p}\\ H_1: \overline{x_p}\neq\overline{y_p}\\


Assume that variances of the populations are equal.

We will use the following criterion:

T=XY(n1)Sx2+(m1)Sy2nm(n+m2)n+mT=\frac{\overline{X}-\overline{Y}}{\sqrt{(n-1)S_x^2+(m-1)S_y^2}}\sqrt{\frac{nm(n+m-2)}{n+m}}

where X and Y are random values of sample means,Sx2 and Sy2 are corrected sample variances respectively.This random value has Student’s t-distribution with k=n+m2 degrees of freedom.\text{where } \overline{X} \text{ and } \overline{Y} \text{ are random values of sample means},\\ S_x^2 \text{ and } S_y^2 \text{ are corrected sample variances respectively}.\\ \text{This random value has Student's t-distribution with } k=n+m-2 \text{ degrees of freedom}.

k=n+m2=25+252=48tcr=tcr(α;k)=tcr(0.01;48)=2.68 (two-sided critical value).tob=xsys(n1)σx2+(m1)σy2nm(n+m2)n+m=20025024(20)2+24(252)2(252)4850=7.80 (observed value)tob<tcr (observed value is in the critical region)k=n+m-2=25+25-2=48\\ t_{cr}=t_{cr}(\alpha;k)=t_{cr}(0.01;48)=2.68 \text{ (two-sided critical value)}.\\ t_{ob}=\frac{\overline{x_s}-\overline{y_s}}{\sqrt{(n-1)\sigma_x^2+(m-1)\sigma_y^2}}\sqrt{\frac{nm(n+m-2)}{n+m}}=\\ \frac{200-250}{\sqrt{24(20)^2+24(25^2)^2}}\sqrt{\frac{(25^2)48}{50}}=-7.80\text{ (observed value)}\\ t_{ob}<-t_{cr} \text{ (observed value is in the critical region)}

The null hypothesis is rejected in favor of the alternative hypothesis.

The machines are not equally efficient at 1% level of significance.


Now we will prove that variances of the populations are equal.

H0:σpx2=σpy2H1:σpx2<σpy2H_0: \sigma_{p_x}^2=\sigma_{p_y}^2\\ H_1: \sigma_{p_x}^2<\sigma_{p_y}^2

We will use the following criterion:

F=Sb2Sl2 where Sb2 is bigger corrected variance and Sl2 is fewer corrected variance.F=\frac{S_b^2}{S_l^2}\\ \text{ where } S_b^2 \text{ is bigger corrected variance} \text{ and } S_l^2 \text{ is fewer corrected variance}.

This random value has F-distribution with k1=m1,k2=n1 degrees of freedom.Fcr=Fcr(α;k1;k2)=Fcr(0.01;24;24)=2.6591.Fob=252202=1.5625.Fob<Fcr and H0 is true.\text{This random value has F-distribution with } k_1=m-1, k_2=n-1\text{ degrees of freedom}.\\ F_{cr}=F_{cr}(\alpha;k_1;k_2)=F_{cr}(0.01;24;24)=2.6591.\\ F_{ob}=\frac{25^2}{20^2}=1.5625.\\ F_{ob}<F_{cr} \text{ and } H_0 \text{ is true}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS