Let X and Y be jointly distributed with p.d.f:
Check
"=\\displaystyle\\int_{-1}^{1}{1 \\over 4}(1+{x(1)^2 \\over 2}-(-1+{x(-1)^2 \\over 2}))dx="
"=\\displaystyle\\int_{-1}^{1}{1 \\over 2}dx={1 \\over 2}\\big[x\\big]\\begin{matrix}\n 1 \\\\\n -1 \n\\end{matrix}"
Marginal distribution of X
"=\\displaystyle\\int_{-1}^{1}{1 \\over4}(1+xy)dy={1 \\over 4}\\bigg[(y+{xy^2 \\over 2})\\bigg]\\begin{matrix}\n 1 \\\\\n -1 \n\\end{matrix}="
"={1 \\over 4}(1+{x(1)^2 \\over 2}-(-1+{x(-1)^2 \\over 2}))={1 \\over 2}"
Marginal distribution of Y
"=\\displaystyle\\int_{-1}^{1}{1 \\over4}(1+xy)dx={1 \\over 4}\\bigg[(x+{x^2y \\over 2})\\bigg]\\begin{matrix}\n 1 \\\\\n -1 \n\\end{matrix}="
"={1 \\over 4}(1+{y(1)^2 \\over 2}-(-1+{y(-1)^2 \\over 2}))={1 \\over 2}"
"f_{X}(x,y)= \\begin{cases}\n {1 \\over 2} & |x|<1, |y|<1 \\\\\n 0 &\\text{Otherwise }\n\\end{cases}""f_{Y}(x,y)= \\begin{cases}\n {1 \\over 2} & |x|<1, |y|<1 \\\\\n 0 &\\text{Otherwise }\n\\end{cases}"
The support set is a rectangle, so we need to check if it is true that "f_{XY}(x,y)=f_{X}(x)f_{Y}(y)," for all "(x, y)." We easily find counterexamples:
"f_{X}({1 \\over 2})f_{Y}({1 \\over 2})={1 \\over 2}({1 \\over 2})={1 \\over 4}"
"f_{X,Y}({1 \\over 2},{1 \\over 2})\\not=f_{X}({1 \\over 2})f_{Y}({1 \\over 2})"
Therefore, X and Y are not independent.
"U=X^2, V=Y^2, 0\\leq u<1, \\leq v<1"
If "-1<x<0 \\ and -1<y<0"
"X=-\\sqrt{U}, Y=-\\sqrt{V}"
The Jacobian
If "0\\leq x<1 \\ and\\ 0\\leq y<1"
"X=\\sqrt{U}, Y=\\sqrt{V}"
If "-1<x<0 \\ and\\ 0\\leq y<1" or "\\ 0\\leq x<1 \\ and\\ 0\\leq y<1"
"X=-\\sqrt{U}, Y=\\sqrt{V}"
"J(u, v)=\\begin{vmatrix}\n \\partial x\/\\partial u & \\partial x\/\\partial v \\\\\n \\partial y\/\\partial u & \\partial y\/\\partial v\n\\end{vmatrix}=""=\\begin{vmatrix}\n -1\/(2\\sqrt{u}) & 0 \\\\\n 0 & 1\/(2\\sqrt{v})\n\\end{vmatrix}=-1\/(4\\sqrt{uv})"If "0\\leq x<1 \\ and\\ -1< y<0"
"X=\\sqrt{U}, Y=-\\sqrt{V}"
If "-1<x<0 \\ and -1<y<0"
"w(v)=\\displaystyle\\int_{-\\infin}^{\\infin}f_{U,V}(u,v)du=""=\\displaystyle\\int_{0}^{1} {1 \\over 16}(1+{1 \\over \\sqrt{uv}})du={1 \\over 16}(1+{1 \\over \\sqrt{v}})"
"f_{U}(v)f_{V}(u)={1 \\over 16}(1+{1 \\over \\sqrt{u}})({1 \\over 16})(1+{1 \\over \\sqrt{v}})\\not=""\\not= {1 \\over 16}(1+{1 \\over \\sqrt{uv}})=f_{U,V}(u,v)"
Therefore, X2 and Y2 are not independent.
Comments
Leave a comment