Question #100628
An insurance sales representative sells policies to 5 men, all identical age and in good health.
According to actual tables, the probability that a man of this particular age will be alive 30
years hence is 2/3. Find the probability that in 30 years
(a) all 5 men; (b) at least 3 men; (c) none will be alive
1
Expert's answer
2019-12-18T11:19:54-0500

Let X=X= the number of men, who will be alive in 30 years: XB(n,p)X\sim B(n, p)


P(X=x)=(nx)px(1p)nxP(X=x)=\binom{n}{x}p^x(1-p)^{n-x}

Given that n=5,p=23n=5, p={2 \over 3}

(a)


P(X=5)=(55)(23)5(123)55=322430.1317P(X=5)=\binom{5}{5}({2 \over 3})^5(1-{2 \over 3})^{5-5}={32 \over 243}\approx0.1317

(b)


P(X3)=P(X=3)+P(X=4)+P(X=5)=P(X\geq3)=P(X=3)+P(X=4)+P(X=5)=

=(53)(23)3(123)53+(54)(23)4(123)54+=\binom{5}{3}({2 \over 3})^3(1-{2 \over 3})^{5-3}+\binom{5}{4}({2 \over 3})^4(1-{2 \over 3})^{5-4}+

+(55)(23)5(123)55=80243+80243+32243=+\binom{5}{5}({2 \over 3})^5(1-{2 \over 3})^{5-5}={80 \over 243}+{80 \over 243}+{32 \over 243}=

=64810.7901={64 \over 81}\approx0.7901

(c)


P(X=0)=(50)(23)0(123)50=12430.0041P(X=0)=\binom{5}{0}({2 \over 3})^0(1-{2 \over 3})^{5-0}={1 \over 243}\approx0.0041


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS