Total balls =6+5+4=15
B=6,G=5,R=4
a. Probability three blue balls are picked without replacement is given by P(B)×P(B)×P(B)
=156×145×134=2730120=914
b. Probability that two blue balls and one green ball are picked is given by [P(B)×P(B)×P(G)]+[P(B)×P(G)×P(B)]+[P(G)×P(B)×P(B)]
=[156×145×135]+[156×145×135]+[155×146×135]
=3×2730150=9115
c. Probability that 1 blue, 1 green and 1 red balls are picked is given by
[P(B)×P(G)×P(R)]+[P(B)×P(R)×P(G)]+[P(R)×P(B)×P(G)]
+[P(R)×P(G)×P(B)]+[P(G)×P(R)×P(B)]+[P(G)×P(B)×P(R)]
=[156×145×134]+[156×144×135]+[154×146×135]+
[154×145×136]+[155×144×136]+[155×146×134]
=6×2730120=9124
Comments