"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c}\n Customer & \\begin{array}{c}\n Spending \\\\\n in\n \\\\\n October\n\\end{array} & \\begin{array}{c}\n Spending \\\\\n in\n\\\\\n November\n\\end{array} & D & \\\\ \\hline\n 1 & 3500 & 3920 & 420 \\\\\n\\hline\n 2 & 4200 & 4505 & 305 \\\\\n\\hline\n 3 & 2675 & 3147 & 472 \\\\\n\\hline\n 4 & 2420 & 2940 & 520 \\\\\n\\hline\n 5 & 3450 & 3786 & 336 \\\\\n\\hline\n 6 & 2990 & 3210 & 220 \\\\\n\\hline\n 7 & 3430 & 3620 & 190 \\\\\n\\hline\n 8 & 3480 & 3747 & 267 \\\\\n\\hline\n 9 & 3720 & 3810 & 90 \\\\\n\\hline\n 10 & 4455 & 4480 & 25 \\\\\n\\hline\n 11 & 3830 & 3970 & 140 \\\\\n \\hdashline\n 12 & 3980 & 4000 & 20\n\\end{array}"
"N=12, \\sum x_i=3005"
"mean=\\bar{x}={\\sum x_i \\over N}={3005 \\over 12}\\approx250.4167"
"s^2={\\sum (x_i-\\bar{x})^2 \\over N-1}\\approx{307516.9167 \\over 12-1}\\approx27956.0833"
"s=\\sqrt{s^2}\\approx167.2007" Margin of Error
"s_{\\bar{x}}={s \\over \\sqrt{N}}" The critical value for "\\alpha=0.1" and "df=N-1=11" degrees of freedom is "t_c=t_{1-\\alpha\/2;N-1}=1.796"
The corresponding confidence interval is computed as
"CI=\\bigg(\\bar{x}-t_c\\cdot{s \\over \\sqrt{N}}, \\bar{x}+t_c\\cdot{s \\over \\sqrt{N}}\\bigg)"
"=(250.4167-1.796\\cdot{167.2007 \\over \\sqrt{12}}, 250.4167+1.796\\cdot{167.2007 \\over \\sqrt{12}})"
"=(163.7297,337.1037)"Therefore, based on the data provided, the 90% confidence interval for the population mean is "163.7297<\\mu<337.1037," which indicates that we are 90% confident that the true population mean "\\mu" is contained by the interval "(163.7297,337.1037)."
Comments
Leave a comment