let x be a nonempty set and let f: X->R have bounded range in R. if a element R , show that
sup(a+f(x): x element X)= a + sup (f(x): x element X)
and
inf(a+f(x): x element X)= a + inf (f(x): x element X)
Using the epsilon-delta definition of the limit prove that if lim x-->a f(x) and lim x-->a g(x) exist, then lim x-->a [f(x)+g(x)] = lim x-->a f(x) + lim x-->a g(x).
Using the epsilon-delta definition of the limit, prove that if lim x-->a f(x) and lim x-->a g(x) exist, then
lim x-->a [f(x) + g(x)] = lim x-->a f(x) + lim x-->a g(x).