Let X be a nonempty set , and let f and g defined on X and have bounded ranges in R. show that
Sup{f(x) + g(x):x element X}<= Sup {f(x):x element X} + Sup {g(x):x element X}
and that,
inf{f(x):x element X} + inf {g(x): x element X} <= inf { f(x) + g(x): x element X}.
also give example to show that each of these inequalities can be either equalities or strict inequalities.
1
Expert's answer
2011-09-18T17:53:05-0400
Proof of (*). for simplicity denote & sup(f+g) := sup{f(x) + g(x):x element X} & sup(f) := sup{f(x):x element X} & sup(g) := sup{g(x):x element X} & inf(f+g) := inf{f(x) + g(x):x element X} & inf(f) := inf{f(x):x element X} & inf(g) := inf{g(x):x element X}
We have to show that sup(f+g) <= sup(f) + sup(g)
For any x from X we have that f(x) <= sup f,& g(x) <= sup g,& whence
Comments
Leave a comment