Check whether the sequence (an), where
an = 1/ (n+1) + 1/(n+2) +....+1/(2n) is convergent or not
It converges to ln2\ln2ln2.
The sequence xnx_nxn is H2n−HnH_{2n}-H_nH2n−Hn, where HnH_nHn is the nthn^{th}nth harmonic number. It is known that limn→+∞(Hn−lnn)\lim\limits_{n\to+\infty}(H_n-\ln n)n→+∞lim(Hn−lnn) is γ\gammaγ, the Euler-Mascheroni constant. Hence
limn→∞((H2n−ln2n)−(Hn−lnn))=γ−γ=0\lim\limits_{n\to\infty}((H_{2n}-\ln2n)-(H_n-\ln n))=\gamma-\gamma=0n→∞lim((H2n−ln2n)−(Hn−lnn))=γ−γ=0.
lim(H2n−Hn)=ln2n−lnn=ln2nn=ln2\lim\limits(H_{2n}-H_n)=\ln2n-\ln n=\ln\frac{2n}{n}=\ln2lim(H2n−Hn)=ln2n−lnn=lnn2n=ln2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments