Question #348645

Let f:[ 0,π/2] → [-1,1] be a function defined by f(x)= cos 2x . Verify that f satisfies the condition of the inverse function theorem. Hence, what can you conclude about the continuity of f^-1?

1
Expert's answer
2022-06-07T13:53:27-0400

The function f(x)=cos2xf(x)=\cos2x is strictly decreasing on (0,π/2).(0, \pi/2). Then the function f(x)=cos2xf(x)=\cos2x is one-to-one on [0,π/2].[0, \pi/2].

The function f(x)=cos2xf(x)=\cos2x is invertible on [0,π/2].[0, \pi/2].

f(x)=2sin(2x)f'(x)=-2\sin(2x)

By  Inverse Function Theorem for all x(0,π/2)x\in(0, \pi/2)


(f1(x))=1f(f1(x))(f^{-1}(x))'=\dfrac{1}{f'(f^{-1}(x))}

f1(x)f^{-1}(x) is continuous on [1,1].[-1,1].


f(x)=cos2x,x[0,π/2]f(x)=\cos2x, x\in [0, \pi/2]

f1(x)=12cos1x,x[1,1]f^{-1}(x)=\dfrac{1}{2}\cos^{-1}x, x\in[-1,1]


(f1(x))=(12cos1x)=121x2(f^{-1}(x))'=(\dfrac{1}{2}\cos^{-1}x)'=-\dfrac{1}{2\sqrt{1-x^2}}


1f(f1(x))=12sin(2(12cos1x))=121x2\dfrac{1}{f'(f^{-1}(x))}=\dfrac{1}{-2\sin(2(\dfrac{1}{2}\cos^{-1}x))}=-\dfrac{1}{2\sqrt{1-x^2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS