Question #346691

True or false with full explanation


i. Every continuous function is differentiable.


ii. Every integrable function is monotonic

1
Expert's answer
2022-06-01T03:36:05-0400

ANSWER Both statements are false.

EXPLANATION

Let

f(x)={-2x+1,if1x<00.4x+1,if0x1f(x)=\begin{cases} & \text -2 x+1,\, \, \, { if } \, -1\leq x<0 \\ & \text0.4 x+1,\, \, { if } \, \,\, \, 0\leq x\leq 1 \end{cases}

Since the function coincides with the polynomials on the segments [1,0)[-1,0) and (0,1](0,1] then the function is continuous on these segments.

limx0f(x)=limx0(2x+1)=1=f(0)==limx0+f(x)=limx0+(0.4x+1)=1.\lim_{x\rightarrow 0^{-}}f(x)= \lim_{x\rightarrow 0^{-}}(-2x+1)=1=f(0) =\\=\lim_{x\rightarrow 0^{+}}f(x)= \lim_{x\rightarrow 0^{+}}(0.4x+1 )=1 .

Thus, ff is continuous at the point x=0x=0 and on the segment [1,1].[-1,1].



(i)

The left-hand derivative at x=0x=0 is

f(0)=limx0f(x)f(1)x=limx02x+11x=2f _{-}^{'}(0)=\lim_{x\rightarrow 0^{-}}\frac{f(x)-f(1) }{x}=\lim_{x\rightarrow 0^{-}}\frac{-2x+1-1 }{x}=-2 ,

the right-hand derivative at x=0x=0 is

f+(0)=limx0+f(x)f(1)x=limx0+0.4x+11x=0.4f _{+}^{'}(0)=\lim_{x\rightarrow 0^{+}}\frac{f(x)-f(1) }{x}=\lim_{x\rightarrow 0^{+}}\frac{0.4x+1-1 }{x}=0.4

Since f(0)f+(0)f_{-}^{'}(0)\neq f_{+}^{'}(0) , then function is not differentiable at the point x=0x=0

(ii) Because function ff is continuous on the segment [1,1][-1,1] , then the function is integrable

on [1,1].[-1,1]. But this function is not monotonic on the segment [1,1][-1,1] , since in the interval (1,0)(-1,0) the function decreases , and in the interval (0,1)(0,1) the function increases .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS