1) The sequence
( 3 + ( − 1 ) n ) \left(3+\left(-1\right)^n\right) ( 3 + ( − 1 ) n )
doesn't converge to 2, because this sequence is oscillating between 2 and 4. Hence, it is divergent.
2) lim x → ∞ ( x − 3 x + 1 ) x = lim x → ∞ ( x + 1 − 4 x + 1 ) x = \lim_{x\rightarrow\infty}{\left(\frac{x-3}{x+1}\right)^x}=\lim_{x\rightarrow\infty}{\left(\frac{x+1-4}{x+1}\right)^x}= lim x → ∞ ( x + 1 x − 3 ) x = lim x → ∞ ( x + 1 x + 1 − 4 ) x = lim x → ∞ ( ( 1 + − 4 x + 1 ) x + 1 − 4 ) − 4 x x + 1 = \lim\limits_{x\rightarrow\infty}{\left(\left(1+\frac{-4}{x+1}\right)^\frac{x+1}{-4}\right)^{-\frac{4x}{x+1}}}= x → ∞ lim ( ( 1 + x + 1 − 4 ) − 4 x + 1 ) − x + 1 4 x =
= lim x → ∞ e − 4 1 + 1 x = e − 4 =\lim_{x\rightarrow\infty}{e^{-\frac{4}{1+\frac{1}{x}}}}= e^{-4} = lim x → ∞ e − 1 + x 1 4 = e − 4 .
3) if x=2 then f n ( 2 ) = 6 1 + 4 n f_n\left(2\right)=\frac{6}{1+4n} f n ( 2 ) = 1 + 4 n 6 and lim n → ∞ f n ( 2 ) = lim n → ∞ 6 1 + 4 n = 0 \lim_{n\rightarrow\infty}{f_n\left(2\right)}=\lim_{n\rightarrow\infty}{\frac{6}{1+4n}}=0 lim n → ∞ f n ( 2 ) = lim n → ∞ 1 + 4 n 6 = 0 .
If x>2 then ∣ f n ( x ) ∣ = ∣ 3 x 1 + n x 2 ∣ ≤ ∣ 3 x n x 2 ∣ = ∣ 3 n x ∣ \left|f_n\left(x\right)\right|=\left|\frac{3x}{1+nx^2}\right|\le\left|\frac{3x}{nx^2}\right|=\left|\frac{3}{nx}\right| ∣ f n ( x ) ∣ = ∣ ∣ 1 + n x 2 3 x ∣ ∣ ≤ ∣ ∣ n x 2 3 x ∣ ∣ = ∣ ∣ n x 3 ∣ ∣ and lim n → ∞ 3 n x = 0 \lim_{n\rightarrow\infty}{\frac{3}{nx}}=0 lim n → ∞ n x 3 = 0
Conclution:
f n ( x ) ⇉ 0 , x ∈ [ 2 , + ∞ [ f_n\left(x\right)\rightrightarrows0,\ x\in\left[2,+\infty\right[ f n ( x ) ⇉ 0 , x ∈ [ 2 , + ∞ [
Comments