Question #343661

a) Does the sequence (3+(-1)n) converge to 2? Justify.

 

 b) Show that limx(x3x+1)x=e4\lim _{x\to \infty }\left(\frac{x-3}{x+1}\right)^x=e^{-4}


c) Check whether the sequence fn (x) = 3x1+nx2\frac{3x}{1+nx^2} where x ∈ [2,∞ [ is uniformly 

convergent in [2,∞ [


1
Expert's answer
2022-05-25T15:21:32-0400

1) The sequence 

(3+(1)n)\left(3+\left(-1\right)^n\right)

doesn't converge to 2, because this sequence is oscillating between 2 and 4. Hence, it is divergent.


2) limx(x3x+1)x=limx(x+14x+1)x=\lim_{x\rightarrow\infty}{\left(\frac{x-3}{x+1}\right)^x}=\lim_{x\rightarrow\infty}{\left(\frac{x+1-4}{x+1}\right)^x}= limx((1+4x+1)x+14)4xx+1=\lim\limits_{x\rightarrow\infty}{\left(\left(1+\frac{-4}{x+1}\right)^\frac{x+1}{-4}\right)^{-\frac{4x}{x+1}}}=

=limxe41+1x=e4=\lim_{x\rightarrow\infty}{e^{-\frac{4}{1+\frac{1}{x}}}}= e^{-4}.


3) if x=2 then fn(2)=61+4nf_n\left(2\right)=\frac{6}{1+4n} and limnfn(2)=limn61+4n=0\lim_{n\rightarrow\infty}{f_n\left(2\right)}=\lim_{n\rightarrow\infty}{\frac{6}{1+4n}}=0.


If x>2 then fn(x)=3x1+nx23xnx2=3nx\left|f_n\left(x\right)\right|=\left|\frac{3x}{1+nx^2}\right|\le\left|\frac{3x}{nx^2}\right|=\left|\frac{3}{nx}\right| and limn3nx=0\lim_{n\rightarrow\infty}{\frac{3}{nx}}=0

Conclution:

fn(x)0, x[2,+[f_n\left(x\right)\rightrightarrows0,\ x\in\left[2,+\infty\right[

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS