Question #343658

a) Find  limx0(tanxsec2xx)x3\ lim_{x\to 0}\frac{\left(tanxsec^2x-x\right)}{x^3}

 

 b) Examine whether the equation, x3- 11x +9 =0 has a real root in the interval [0,1]


 c) Check whether the following series are convergent or not (4) 

 i) n=1(3n1)7n\sum _{n=1}^{\infty }\:\frac{\left(3n-1\right)}{7^n}

(ii) n=1(n2+3n23)n\sum _{n=1}^{\infty }\frac{\left(\:\sqrt{n^2+3}-\sqrt{n^2-3}\right)}{\sqrt{n}}\:




1
Expert's answer
2022-05-24T15:56:33-0400

a)


limx0tanxsec2xxx3=limx0tanx(1)2xx3\lim\limits_{x\to 0}\dfrac{\tan x\sec^2 x-x}{x^3}=\lim\limits_{x\to 0}\dfrac{\tan x(1)^2-x}{x^3}

=limx0x+x33+2x515+...xx3=\lim\limits_{x\to 0}\dfrac{x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}+...-x}{x^3}

=limx0x33+2x515+...x3=\lim\limits_{x\to 0}\dfrac{\dfrac{x^3}{3}+\dfrac{2x^5}{15}+...}{x^3}


=limx0(13+2x215+...)=13=\lim\limits_{x\to 0}(\dfrac{1}{3}+\dfrac{2x^2}{15}+...)=\dfrac{1}{3}

b)

f(x)=x311x+9f(x)=x^3-11x+9 is continuous on [0,1].[0, 1].


f(0)=(0)311(0)+9=9>0f(0)=(0)^3-11(0)+9=9>0

f(1)=(1)311(1)+9=1<0f(1)=(1)^3-11(1)+9=-1<0

Then by the Intermediate Value Theorem there exists a number cc in (0,1)(0, 1) such that f(c)=0.f(c)=0.

Therefore the equation, x311x+9=0x^3- 11x +9 =0 has a real root in the interval [0,1][0,1] by the Intermediate Value Theorem.


c)

(i)


i=13n17n\displaystyle\sum_{i=1}^{\infin}\dfrac{3n-1}{7^n}

Use the Ratio Test


an+1an=3(n+1)17n+13n17n=17(3n+23n1)17<1|\dfrac{a_{n+1}}{a_n}|=|\dfrac{\dfrac{3(n+1)-1}{7^{n+1}}}{\dfrac{3n-1}{7^n}}|=\dfrac{1}{7}(\dfrac{3n+2}{3n-1})\to\dfrac{1}{7}<1

Thus, by the Ratio Test, the given series is absolutely convergent and therefore convergent.


(ii)


i=1n2+3n23n\displaystyle\sum_{i=1}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{\sqrt{n}}

=i=1n2+3(n23)n(n2+3+n23)=\displaystyle\sum_{i=1}^{\infin}\dfrac{n^2+3-(n^2-3)}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}

=i=16n(n2+3+n23)=\displaystyle\sum_{i=1}^{\infin}\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}

Use the Limit Comparison Test

Take an=6n(n2+3+n23),bn=1na_n=\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}, b_n=\dfrac{1}{n}


limnanbn=limn6n(n2+3+n23)1n\lim\limits_{n\to \infin}\dfrac{a_n}{b_n}=\lim\limits_{n\to \infin}\dfrac{\dfrac{6}{\sqrt{n}(\sqrt{n^2+3}+\sqrt{n^2-3})}}{\dfrac{1}{n}}


=limn61+3/n2+13/n2=3=\lim\limits_{n\to \infin}\dfrac{6}{\sqrt{1+3/n^2}+\sqrt{1-3/n^2}}=3

The harmonic series i=11n\displaystyle\sum_{i=1}^{\infin}\dfrac{1}{n} is divergent.

Therefore the series i=1n2+3n23n\displaystyle\sum_{i=1}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{\sqrt{n}} is divergent by the Limit Comparison Test.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS