ANSWER
To prove the statements , we use the following  propositions.
Proposition 1. Let  xn=(xn,yn) is sequence  in R2 , x=(x,y) .  
xn→x(∣∣xn−x∣∣→0)  if and only if  xn→x  and  yn→y.
Proposition 2. 
a) If the sequence  (xn) converges to x in R and  a∈R , then the sequence (axn) converges to  ax  (limn→∞a⋅xn=a⋅limn→∞xn )
 b) If the sequence  (xn) converges to x in R and  (yn) converges to y in R , then the sequence (xn+yn) converges to  x+y  , the sequence  (xn⋅yn)  converges to  x⋅y  (limn→∞(xn+yn)=limn→∞xn+limn→∞yn,  
 limn→∞(xn⋅yn)=(limn→∞xn)⋅(limn→∞yn))  .
(i) Since 
(xn,yn)+(un,vn)=(xn+un,yn+vn)  and ,by the Proposition 1, xn→x0,yn→y0,un→u0,vn→v0 , then ( by the Proposition 2 b)) xn+un→x0+u0,yn+vn→y0+v0 . Hence (Proposition 1), (xn+un,yn+vn)→(x0+u0,y0+v0)=(x0,y0)+(u0,v0)  .
Therefore (xn,yn)+(un,vn)→(x0,y0)+(u0,v0). 
Since, 
(xn,yn)⋅(un,vn)=xn⋅un+yn⋅vn  and  xn⋅un→x0⋅u0,yn⋅vn→y0⋅v0 , then 
xn⋅un+yn⋅vn→x0⋅u0+y0⋅v0= (x0,y0)⋅(u0,v0) .
Or (xn,yn)⋅(un,vn) converges to  (x0,y0)⋅(u0,v0)
(ii)r⋅(xn,yn)=(rxn,ryn) . By the Propositions 2a ),1), limn→∞r⋅xn=r⋅x,  limn→∞r⋅yn=r⋅y, (rxn,ryn)→(rx0,ry0)=r(x0,y0). 
Or   r⋅(xn,yn)→ r(x0,y0). 
Comments