ANSWER
To prove the statements , we use the following propositions.
Proposition 1. Let xn=(xn,yn) is sequence in R2 , x=(x,y) .
xn→x(∣∣xn−x∣∣→0) if and only if xn→x and yn→y.
Proposition 2.
a) If the sequence (xn) converges to x in R and a∈R , then the sequence (axn) converges to ax (limn→∞a⋅xn=a⋅limn→∞xn )
b) If the sequence (xn) converges to x in R and (yn) converges to y in R , then the sequence (xn+yn) converges to x+y , the sequence (xn⋅yn) converges to x⋅y (limn→∞(xn+yn)=limn→∞xn+limn→∞yn,
limn→∞(xn⋅yn)=(limn→∞xn)⋅(limn→∞yn)) .
(i) Since
(xn,yn)+(un,vn)=(xn+un,yn+vn) and ,by the Proposition 1, xn→x0,yn→y0,un→u0,vn→v0 , then ( by the Proposition 2 b)) xn+un→x0+u0,yn+vn→y0+v0 . Hence (Proposition 1), (xn+un,yn+vn)→(x0+u0,y0+v0)=(x0,y0)+(u0,v0) .
Therefore (xn,yn)+(un,vn)→(x0,y0)+(u0,v0).
Since,
(xn,yn)⋅(un,vn)=xn⋅un+yn⋅vn and xn⋅un→x0⋅u0,yn⋅vn→y0⋅v0 , then
xn⋅un+yn⋅vn→x0⋅u0+y0⋅v0= (x0,y0)⋅(u0,v0) .
Or (xn,yn)⋅(un,vn) converges to (x0,y0)⋅(u0,v0)
(ii)r⋅(xn,yn)=(rxn,ryn) . By the Propositions 2a ),1), limn→∞r⋅xn=r⋅x, limn→∞r⋅yn=r⋅y, (rxn,ryn)→(rx0,ry0)=r(x0,y0).
Or r⋅(xn,yn)→ r(x0,y0).
Comments