Question #330889

Let ((Xn, Yn)) and ((Un, Vn)) be sequences in R2, and let


(X0, Y0), (U0, Vo) belong to R2.


(i) If (Xn,Yn) converges to (X0, Y0) and (Un, Vn) converges to (Uo, Vo), then (Xn,Yn)+(Un, Vn) converges to (X0,Y0) + (U0,V0) and (Xn,Yn).(Un,Vn) converges to (Xo,Y0)(Uo, V0).



ii) If (Xn, Yn) converges to (X0, Y0), then for any r belonging to R, r(Xn,Yn) converges to r(X0,Y0).



1
Expert's answer
2022-04-20T13:37:41-0400

ANSWER

To prove the statements , we use the following propositions.

Proposition 1. Let xn=(xn,yn)\mathbf{x_ {n}}=\left (x _{n} ,y_{n} \right ) is sequence in R2\R^{2} , x=(x,y)\mathbf{x }=\left (x ,y \right ) .

xnx(xnx0)\mathbf{x_ {n}}\rightarrow \mathbf{x }(||\mathbf{x_ {n}}-\mathbf{x }||\rightarrow 0) if and only if xnxx_{n}\rightarrow x and ynyy_{n}\rightarrow y.

Proposition 2.

a) If the sequence (xn)(x_{n}) converges to xx in R\R and aRa\in\R , then the sequence (axn)(ax_{n}) converges to axax (limnaxn=alimnxn\lim_{n\rightarrow\infty}a\cdot x_{n}=a\cdot \lim_{n\rightarrow\infty}x_{n} )

b) If the sequence (xn)(x_{n}) converges to xx in R\R and (yn)(y_{n}) converges to yy in R\R , then the sequence (xn+yn)( x_{n}+y_{n}) converges to x+yx+y , the sequence (xnyn)( x_{n}\cdot y_{n}) converges to xyx\cdot y (limn(xn+yn)=limnxn+limnyn,(\lim_{n\rightarrow\infty} ( x_{n}+y_{n})= \lim_{n\rightarrow\infty}x_{n}+\lim_{n\rightarrow\infty}y_{n},

limn(xnyn)=(limnxn)(limnyn))\lim_{n\rightarrow\infty} ( x_{n}\cdot y_{n})=( \lim_{n\rightarrow\infty}x_{n})\cdot (\lim_{n\rightarrow\infty}y_{n})) .

(i) Since

(xn,yn)+(un,vn)=(xn+un,yn+vn)(x_{n},y_{n})+(u_{n},v_{n})=(x_{n}+u_{n},y_{n}+v_{n}) and ,by the Proposition 1, xnx0,yny0,unu0,vnv0x_{n} \rightarrow x_{0}, y_{n}\rightarrow y_{0}, u_{n}\rightarrow u_{0}, v_{n}\rightarrow v_{0} , then ( by the Proposition 2 b)) xn+unx0+u0,yn+vny0+v0x_{n}+u_{n} \rightarrow x_{0}+u_{0}, y_{n}+v_{n}\rightarrow y_{0} +v_{0} . Hence (Proposition 1), (xn+un,yn+vn)(x0+u0,y0+v0)=(x0,y0)+(u0,v0)(x_{n}+u_{n},y_{n}+v_{n})\rightarrow (x_{0}+u_{0},y_{0}+v_{0})=(x_{0},y_{0})+(u_{0},v_{0}) .

Therefore (xn,yn)+(un,vn)(x0,y0)+(u0,v0).(x_{n},y_{n})+(u_{n},v_{n})\rightarrow (x_{0},y_{0})+(u_{0},v_{0}).

Since,

(xn,yn)(un,vn)=xnun+ynvn(x_{n},y_{n})\cdot(u_{n},v_{n})= x_{n}\cdot u_{n}+y_{n}\cdot v_{n} and xnunx0u0,ynvny0v0x_{n}\cdot u_{n} \rightarrow x_{0}\cdot u_{0}, y_{n}\cdot v_{n}\rightarrow y_{0} \cdot v_{0} , then

xnun+ynvnx0u0+y0v0=x_{n}\cdot u_{n}+y_{n}\cdot v_{n} \rightarrow x_{0}\cdot u_{0}+y_{0}\cdot v_{0} = (x0,y0)(u0,v0)(x_{0},y_{0})\cdot(u_{0},v_{0}) .

Or (xn,yn)(un,vn)(x_{n},y_{n})\cdot(u_{n},v_{n}) converges to (x0,y0)(u0,v0)(x_{0},y_{0})\cdot(u_{0},v_{0})

(ii)r(xn,yn)=(rxn,ryn)r\cdot (x_{n},y_{n})=(rx_{n},ry_{n}) . By the Propositions 2a ),1), limnrxn=rx,\lim_{n\rightarrow\infty}r\cdot x_{n}=r\cdot x, limnryn=ry,\lim_{n\rightarrow\infty}r\cdot y_{n}=r\cdot y, (rxn,ryn)(rx0,ry0)=r(x0,y0).(rx_{n},ry_{n})\rightarrow(rx_{0},ry_{0})=r( x_{0}, y_{0}).

Or r(xn,yn)r\cdot (x_{n},y_{n})\rightarrow r(x0,y0).r( x_{0}, y_{0}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS