ANSWER ∑n=1∞(2n+1)2⋅(2n+2)2(2n−1)(2n) converges
EXPLANATION
an=(2n+1)2⋅(2n+2)2(2n−1)(2n)⇒
a1=(2⋅1+1)2⋅(2⋅1+2)2(2⋅1−1)(2⋅1)=32⋅421⋅2, a2=(2⋅2+1)2⋅(2⋅2+2)2(2⋅2−1)(2⋅2)=52⋅623⋅4, a3=(2⋅3+1)2⋅(2⋅3+2)2(2⋅3−1)(2⋅3)=72⋅825⋅6... .Let bn=n21 , then bnan=(2n+1)2⋅(2n+2)2(2n−1)(2n)⋅n2 =(2+n1)2⋅(2+n2)2(2−n1)⋅2 . Since limn→∞n1=0 , then limn→∞bnan=41>0.
The series ∑n=1∞n21 converges (p-series, p=2). Hence (by Limit Comparison Test) ∑n=1∞(2n+1)2⋅(2n+2)2(2n−1)(2n) converges.
Comments