Question #326682

find the nth term of the following series 1*2/3^2*4^2 + 3*4/5^2*6^2 + 5*6/7^2*8^2 + ... is convergent.

1
Expert's answer
2022-04-11T16:14:53-0400

ANSWER n=1(2n1)(2n)(2n+1)2(2n+2)2\sum_{n=1}^{\infty }\frac{(2n-1)(2n) }{\left ( 2n+1 \right )^{2}\cdot\left ( 2n+2 \right )^{2}} converges

EXPLANATION

an=(2n1)(2n)(2n+1)2(2n+2)2a_{n}= \frac{(2n-1)(2n) }{\left ( 2n+1 \right )^{2}\cdot\left ( 2n+2 \right )^{2}} \Rightarrow

a1=(211)(21)(21+1)2(21+2)2=123242,a_{1} =\frac{(2\cdot1-1)(2\cdot1 ) }{\left ( 2\cdot1+1 \right )^{2}\cdot\left ( 2\cdot1+2 \right )^{2 }} =\frac{1\cdot2}{3^{2}\cdot4^{2}}, a2=(221)(22)(22+1)2(22+2)2=345262,a_{2} =\frac{(2\cdot2-1)(2\cdot2 ) }{\left ( 2\cdot2+1 \right )^{2}\cdot\left ( 2\cdot2+2 \right )^{2 }} =\frac{3\cdot4}{5^{2}\cdot6^{2}}, a3=(231)(23)(23+1)2(23+2)2=567282...a_{3} =\frac{(2\cdot3-1)(2\cdot3 ) }{\left ( 2\cdot3+1 \right )^{2}\cdot\left ( 2\cdot3+2 \right )^{2 }} =\frac{5\cdot6}{7^{2}\cdot8^{2}} ... .Let bn=1n2b_{n}= \frac{1}{n^{2}} , then anbn=(2n1)(2n)n2(2n+1)2(2n+2)2\frac{a_{n}}{b_{n}}=\frac{(2n-1)(2n) \cdot n^{2}}{\left ( 2n+1 \right )^{2}\cdot\left ( 2n+2 \right )^{2}} =(21n)2(2+1n)2(2+2n)2= \frac{(2 -\frac{1}{n}) \cdot 2 }{\left ( 2 +\frac{1}{n} \right )^{2}\cdot\left ( 2 +\frac{2}{n} \right )^{2}} . Since limn1n=0\lim _{n\rightarrow\infty}\frac{1}{n}=0 , then limnanbn=14>0.\lim _{n\rightarrow\infty}\frac{a_{n}}{b_{n}}=\frac{1}{4}>0.

The series n=11n2\sum_{n=1}^{\infty}\frac{1}{n^{2}} converges (p-series, p=2). Hence (by Limit Comparison Test) n=1(2n1)(2n)(2n+1)2(2n+2)2\sum_{n=1}^{\infty }\frac{(2n-1)(2n) }{\left ( 2n+1 \right )^{2}\cdot\left ( 2n+2 \right )^{2}} converges.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS