What is the Fourier cosine series for f(x) = 2-π, in the interval 0 ≤ x < 2π?
We havef(x)=2−πa0=22π∫02πf(x)dx=2π(2−π)π=2(2−π)an=22π∫02πf(x)cosnx2dx=1π(2−π)∫02πcosnx2dx==2−ππ⋅2nsinnx2∣02π=0f(x)=a02=2−πWe\,\,have\\f\left( x \right) =2-\pi \\a_0=\frac{2}{2\pi}\int_0^{2\pi}{f\left( x \right) dx}=\frac{2\pi \left( 2-\pi \right)}{\pi}=2\left( 2-\pi \right) \\a_n=\frac{2}{2\pi}\int_0^{2\pi}{f\left( x \right) \cos \frac{nx}{2}dx}=\frac{1}{\pi}\left( 2-\pi \right) \int_0^{2\pi}{\cos \frac{nx}{2}dx}=\\=\frac{2-\pi}{\pi}\cdot \frac{2}{n}\sin \frac{nx}{2}|_{0}^{2\pi}=0\\f\left( x \right) =\frac{a_0}{2}=2-\piWehavef(x)=2−πa0=2π2∫02πf(x)dx=π2π(2−π)=2(2−π)an=2π2∫02πf(x)cos2nxdx=π1(2−π)∫02πcos2nxdx==π2−π⋅n2sin2nx∣02π=0f(x)=2a0=2−π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments