Question #323297

What is the Fourier cosine series for f(x) = 2-π, in the interval 0 ≤ x < 2π?

1
Expert's answer
2022-04-05T15:41:51-0400

Wehavef(x)=2πa0=22π02πf(x)dx=2π(2π)π=2(2π)an=22π02πf(x)cosnx2dx=1π(2π)02πcosnx2dx==2ππ2nsinnx202π=0f(x)=a02=2πWe\,\,have\\f\left( x \right) =2-\pi \\a_0=\frac{2}{2\pi}\int_0^{2\pi}{f\left( x \right) dx}=\frac{2\pi \left( 2-\pi \right)}{\pi}=2\left( 2-\pi \right) \\a_n=\frac{2}{2\pi}\int_0^{2\pi}{f\left( x \right) \cos \frac{nx}{2}dx}=\frac{1}{\pi}\left( 2-\pi \right) \int_0^{2\pi}{\cos \frac{nx}{2}dx}=\\=\frac{2-\pi}{\pi}\cdot \frac{2}{n}\sin \frac{nx}{2}|_{0}^{2\pi}=0\\f\left( x \right) =\frac{a_0}{2}=2-\pi


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS