Question #323241

Show that the sequence En=(1+1/n)^n is bounded and increasing

1
Expert's answer
2022-04-04T18:41:04-0400

en=(1+1n)n(1+1n)n=i=0nCni(1n)ni=1+n1n+n(n1)2n2+n(n1)(n2)23n3+...+n!n!nn==2+12!n1n+13!n2nn1n+...+1n!1n2n...nn<<2+12!+13!+...+1n!<2+12+122+...+12n1<2+1/211/2=3Boundedby3Next,en=2+12!(11n)+13!(11n)(12n)+...+1n!(11n)(12n)...(1n1n)en+1=2+12!(11n+1)+13!(11n+1)(12n+1)+...+1n!(11n+1)(12n+1)...(1n1n+1)++1(n+1)!(11n+1)(12n+1)...(1nn+1)>>2+12!(11n)+13!(11n)(12n)+...+1n!(11n)(12n)...(1n1n)=enIncreasinge_n=\left( 1+\frac{1}{n} \right) ^n\\\left( 1+\frac{1}{n} \right) ^n=\sum_{i=0}^n{C_{n}^{i}\left( \frac{1}{n} \right) ^{n-i}}=1+n\cdot \frac{1}{n}+\frac{n\left( n-1 \right)}{2n^2}+\frac{n\left( n-1 \right) \left( n-2 \right)}{2\cdot 3n^3}+...+\frac{n!}{n!n^n}=\\=2+\frac{1}{2!}\frac{n-1}{n}+\frac{1}{3!}\frac{n-2}{n}\frac{n-1}{n}+...+\frac{1}{n!}\frac{1}{n}\frac{2}{n}...\frac{n}{n}<\\<2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}<2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}<2+\frac{1/2}{1-1/2}=3\\Bounded\,\,by\,\,3\\Next,\\e_n=2+\frac{1}{2!}\left( 1-\frac{1}{n} \right) +\frac{1}{3!}\left( 1-\frac{1}{n} \right) \left( 1-\frac{2}{n} \right) +...+\frac{1}{n!}\left( 1-\frac{1}{n} \right) \left( 1-\frac{2}{n} \right) ...\left( 1-\frac{n-1}{n} \right) \\e_{n+1}=2+\frac{1}{2!}\left( 1-\frac{1}{n+1} \right) +\frac{1}{3!}\left( 1-\frac{1}{n+1} \right) \left( 1-\frac{2}{n+1} \right) +...+\frac{1}{n!}\left( 1-\frac{1}{n+1} \right) \left( 1-\frac{2}{n+1} \right) ...\left( 1-\frac{n-1}{n+1} \right) +\\+\frac{1}{\left( n+1 \right) !}\left( 1-\frac{1}{n+1} \right) \left( 1-\frac{2}{n+1} \right) ...\left( 1-\frac{n}{n+1} \right) >\\>2+\frac{1}{2!}\left( 1-\frac{1}{n} \right) +\frac{1}{3!}\left( 1-\frac{1}{n} \right) \left( 1-\frac{2}{n} \right) +...+\frac{1}{n!}\left( 1-\frac{1}{n} \right) \left( 1-\frac{2}{n} \right) ...\left( 1-\frac{n-1}{n} \right) =e_n\\Incre\mathrm{a}\sin g\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS