Let fn(x) = cosnx/√ n , x belong to R, is not pointwise convergent. True or false with full explanation
False.
Note that ∣cosnxn∣⩽1n→0,n→∞\left| \frac{\cos nx}{\sqrt{n}} \right|\leqslant \frac{1}{\sqrt{n}}\rightarrow 0,n\rightarrow \infty∣∣ncosnx∣∣⩽n1→0,n→∞
Thus
limn→∞fn(x)=limn→∞cosnxn=0\underset{n\rightarrow \infty}{\lim}f_n\left( x \right) =\underset{n\rightarrow \infty}{\lim}\frac{\cos nx}{\sqrt{n}}=0n→∞limfn(x)=n→∞limncosnx=0
which means fnf_nfn is pointwise convergent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments