Question #310437

Prove or disprove the following statement



‘ Every strictly increasing onto function is invertible'

1
Expert's answer
2022-03-15T10:15:59-0400

Solution:Let F:RR be any strictly increasing into function.We show that F is bijective.To this end ,let x,yR with xy then so we assume x<y,so that F(x)<F(y) implies F(x)F(y).That is f is injective and since F is onto by the hypothesis,it is bijective and thus invertible.Solution: \\Let ~F:R \rightarrow R~be ~any~strictly~increasing~into~function. \\We~show~that~F~is~bijective. \\To~this~end~,let~x,y\in R~with~x \neq y~then~so~we~assume~x<y,so~that~ \\F(x)<F(y)~ implies~F(x)\neq F(y).That~is~f ~is ~ injective~and~since~F ~is~onto~by~the~hypothesis, \\it~is~bijective~and~thus~invertible.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS