Test whether the series ∞Σn=0 1/(n^5+x^3) converges uniformly or not
Solution
For the given series
We use the Ratio Test for the Radius of convergence
Convergence when
Here, , then
Therefore,
L = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{n^5}\left( {1 + \frac{{{x^3}}}{{{n^5}}}} \right)}}{{{n^5}{{\left( {\frac{1}{n} + 1} \right)}^5} + {x^3}}}} \right|\
L = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{n^5}\left( {1 + \frac{{{x^3}}}{{{n^5}}}} \right)}}{{{n^5}\left( {{{\left( {\frac{1}{n} + 1} \right)}^5} + \frac{{{x^3}}}{{{n^5}}}} \right)}}} \right|\
L = \left| {\frac{{\left( {1 + \frac{{{x^3}}}{{{\infty ^5}}}} \right)}}{{\left( {{{\left( {\frac{1}{\infty } + 1} \right)}^5} + \frac{{{x^3}}}{{{\infty ^5}}}} \right)}}} \right|\
L = \left| {\frac{{\left( {1 + 0} \right)}}{{\left( {{{\left( {0 + 1} \right)}^5} + 0} \right)}}} \right|\
Hence the series may be divergent, conditionally convergent, or absolutely convergent.
Now, when
\sum\limits_0^\infty {\left| {{a_n}} \right|} \ converges, then \sum\limits_0^\infty {{a_n}} \ converges.
Therefore, the series is convergent for
Comments