Question #308266

Test whether the series ∞Σn=0 1/(n^5+x^3) converges uniformly or not

1
Expert's answer
2022-03-09T15:26:52-0500

Solution


For the given series


01n5+x3\sum_{0}^{\infty }\frac{1}{n^5+x^3}


We use the Ratio Test for the Radius of convergence


Convergence when L<1L < 1


L=limnan+1anL=\lim_{n\rightarrow \infty }\left | \frac{a_{n+1}}{a_{n}} \right |


Here, an=1n5+x3a_{n}=\frac{1}{n^5+x^3} , then


an+1=1(n+1)5+x3a_{n+1}=\frac{1}{(n+1)^5+x^3}


Therefore,

L=limn1(n+1)5+x31n5+x3L=\lim_{n\rightarrow \infty }\left | \frac{\frac{1}{(n+1)^5+x^3}}{\frac{1}{n^5+x^3}}\right |


L=limnn5+x3(1+n)5+x3L=\lim_{n\rightarrow \infty }\left | \frac{n^5+x^3}{(1+n)^5+x^3}\right |



L = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{n^5}\left( {1 + \frac{{{x^3}}}{{{n^5}}}} \right)}}{{{n^5}{{\left( {\frac{1}{n} + 1} \right)}^5} + {x^3}}}} \right|\


L = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{n^5}\left( {1 + \frac{{{x^3}}}{{{n^5}}}} \right)}}{{{n^5}\left( {{{\left( {\frac{1}{n} + 1} \right)}^5} + \frac{{{x^3}}}{{{n^5}}}} \right)}}} \right|\


L = \left| {\frac{{\left( {1 + \frac{{{x^3}}}{{{\infty ^5}}}} \right)}}{{\left( {{{\left( {\frac{1}{\infty } + 1} \right)}^5} + \frac{{{x^3}}}{{{\infty ^5}}}} \right)}}} \right|\


L = \left| {\frac{{\left( {1 + 0} \right)}}{{\left( {{{\left( {0 + 1} \right)}^5} + 0} \right)}}} \right|\


L=1L=1


Hence the series may be divergent, conditionally convergent, or absolutely convergent.


Now, when


\sum\limits_0^\infty {\left| {{a_n}} \right|} \ converges, then \sum\limits_0^\infty {{a_n}} \ converges.


Therefore, the series is convergent for x>1x>-1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS