Question #303208

Show that the function f: [0,1]→ R defined by


F(x) = { 2 , when x is rational


{ 3 , when x is irrational


is not riemann integrable on[0,1]

1
Expert's answer
2022-03-01T13:36:46-0500

ANSWER.

Let P={0=t0<t1<...<tn=1}P=\left \{ 0=t_{0}<t_{1} <...<t_{n}=1\right \} be a partition of the segment [0,1]. Denote Mk=sup{f(t):t[tk1,tk]},M_{k}=sup \left \{ f(t):t\in\left [t _{k-1},t_{k} \right ]\right \} , mk=inf{f(t):t[tk1,tk]},k=1,...,nm_{k}=inf \left \{ f(t):t\in\left [t _{k-1},t_{k} \right ]\right \} , k=1,...,n .

Since in any segment there are rational numbers and irrational numbers , then Mk=3,mk=2M_{k}=3, m_{k}=2 for all k=1,...,nk=1,...,n . So the upper Darboux sum U(f,P)U(f,P) respect to PP is the sum

U(f,P)=1nMk(tktk1)=1n3(tktk1)=3(10)=3U(f,P)=\sum _{1}^{n}M_{k} \left ( t_{k}-t_{k-1} \right )=\sum _{1}^{n}3\left ( t_{k}-t_{k-1} \right )=3(1-0)=3

The lower Darboux sum L(f,P)L(f,P) is the sum

L(f,P)=1nmk(tktk1)=1n2(tktk1)=2(10)=2L(f,P)=\sum _{1}^{n}m_{k} \left ( t_{k}-t_{k-1} \right )=\sum _{1}^{n}2\left ( t_{k}-t_{k-1} \right )=2(1-0)=2 .

Therefore, the upper Darboux integral

U(f)=inf{U(f,P):Pispartitionof[0,1]}=3,U(f)= inf\left \{ U(f,P):P\, is \, \, partition \, \, of\, \, [0,1] \right \}=3,

the lower Darboux integral

L(f)=sup{L(f,P):Pispartitionof[0,1]}=2.L(f)= sup\left \{ L(f,P):P\, is \, \, partition \, \, of\, \, [0,1] \right \}=2.

The upper and lower Darboux integrals for ff do not agree , so ff is not integrable.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS