n→+∞lim[(2n+1)21+(2n+2)22+(2n+3)23+..(5n)23n]=?
Note that
[(2n+1)21+(2n+2)22+⋯+(5n)23n]+2n[(2n+1)21+(2n+2)21+⋯+(5n)21]
=(2n+1)22n+1+(2n+2)22n+2+⋯+(5n)25n=2n+11+2n+21+⋯+5n1
Therefore,
(2n+1)21+(2n+2)22+⋯+(5n)23n=k=2n+1∑5nk1−2nk=2n+1∑5nk21 (*)
We will get an integral estimate of both terms on the right-hand side of this equality.
For all x∈[k−1,k] we have x+11≤k1≤x1. Thus,
k=2n+1∑5nk1≤k=2n+1∑5nk−1∫kxdx=2n∫5nxdx=log2n5n=log25 ,
k=2n+1∑5nk1≥k=2n+1∑5nk−1∫kx+1dx=2n∫5nx+1dx=log2n+15n+1=log25+O(n1) ,
Therefore,
k=2n+1∑5nk1=log25+O(n1)
Similarly,
k=2n+1∑5nk21≤k=2n+1∑5nk−1∫kx2dx=2n∫5nx2dx=2n1−5n1=10n3
k=2n+1∑5nk21≥k=2n+1∑5nk−1∫k(x+1)2dx=2n∫5n(x+1)2dx=(2n+1)(5n+1)3n =10n3+O(n21)
Therefore,
k=2n+1∑5nk21=10n3+O(n21)
Let's apply the obtained asymptotic estimates to equality (*).
(2n+1)21+(2n+2)22+⋯+(5n)23n =log25+O(n1)−2n(10n3+O(n21)) =log25−53+O(n1)
n→+∞lim[(2n+1)21+(2n+2)22+(2n+3)23+..(5n)23n] =log25−53
Answer. log25−53
Comments