Question #302004

Find





lim [1/(2n+1)^2


+2/(2n+2)^2+3/(2n+3)^2+..3/25n] n→ ∞

1
Expert's answer
2022-02-27T12:10:24-0500

limn+[1(2n+1)2+2(2n+2)2+3(2n+3)2+..3n(5n)2]=?\lim\limits_{n\to+\infty} [\frac{1}{(2n+1)^2}+\frac{2}{(2n+2)^2}+\frac{3}{(2n+3)^2}+..\frac{3n}{(5n)^2}]=?

Note that

[1(2n+1)2+2(2n+2)2++3n(5n)2]+2n[1(2n+1)2+1(2n+2)2++1(5n)2][\frac{1}{(2n+1)^2}+\frac{2}{(2n+2)^2}+\dots+\frac{3n}{(5n)^2}]+2n[\frac{1}{(2n+1)^2}+\frac{1}{(2n+2)^2}+\dots+\frac{1}{(5n)^2}]

=2n+1(2n+1)2+2n+2(2n+2)2++5n(5n)2=12n+1+12n+2++15n=\frac{2n+1}{(2n+1)^2}+\frac{2n+2}{(2n+2)^2}+\dots+\frac{5n}{(5n)^2}=\frac{1}{2n+1}+\frac{1}{2n+2}+\dots+\frac{1}{5n}

Therefore,

1(2n+1)2+2(2n+2)2++3n(5n)2=k=2n+15n1k2nk=2n+15n1k2\frac{1}{(2n+1)^2}+\frac{2}{(2n+2)^2}+\dots+\frac{3n}{(5n)^2}=\sum\limits_{k=2n+1}^{5n}\frac{1}{k}-2n\sum\limits_{k=2n+1}^{5n}\frac{1}{k^2} (*)

We will get an integral estimate of both terms on the right-hand side of this equality.

For all x[k1,k]x\in[k-1,k] we have 1x+11k1x\frac{1}{x+1}\leq\frac{1}{k}\leq \frac{1}{x}. Thus,

k=2n+15n1kk=2n+15nk1kdxx=2n5ndxx=log5n2n=log52\sum\limits_{k=2n+1}^{5n}\frac{1}{k} \leq \sum\limits_{k=2n+1}^{5n}\int\limits_{k-1}^{k}\frac{dx}{x}=\int\limits_{2n}^{5n}\frac{dx}{x}=\log\frac{5n}{2n}=\log\frac{5}{2} ,

k=2n+15n1kk=2n+15nk1kdxx+1=2n5ndxx+1=log5n+12n+1=log52+O(1n)\sum\limits_{k=2n+1}^{5n}\frac{1}{k}\geq \sum\limits_{k=2n+1}^{5n}\int\limits_{k-1}^{k}\frac{dx}{x+1}=\int\limits_{2n}^{5n}\frac{dx}{x+1}=\log\frac{5n+1}{2n+1}=\log\frac{5}{2}+O(\frac{1}{n}) ,

Therefore,

k=2n+15n1k=log52+O(1n)\sum\limits_{k=2n+1}^{5n}\frac{1}{k}=\log\frac{5}{2}+O(\frac{1}{n})

Similarly,

k=2n+15n1k2k=2n+15nk1kdxx2=2n5ndxx2=12n15n=310n\sum\limits_{k=2n+1}^{5n}\frac{1}{k^2} \leq \sum\limits_{k=2n+1}^{5n}\int\limits_{k-1}^{k}\frac{dx}{x^2}=\int\limits_{2n}^{5n}\frac{dx}{x^2}=\frac{1}{2n}-\frac{1}{5n}=\frac{3}{10n}

k=2n+15n1k2k=2n+15nk1kdx(x+1)2=2n5ndx(x+1)2=3n(2n+1)(5n+1)\sum\limits_{k=2n+1}^{5n}\frac{1}{k^2} \geq \sum\limits_{k=2n+1}^{5n}\int\limits_{k-1}^{k}\frac{dx}{(x+1)^2}=\int\limits_{2n}^{5n}\frac{dx}{(x+1)^2}=\frac{3n}{(2n+1)(5n+1)} =310n+O(1n2)=\frac{3}{10n}+O(\frac{1}{n^2})

Therefore,

k=2n+15n1k2=310n+O(1n2)\sum\limits_{k=2n+1}^{5n}\frac{1}{k^2}=\frac{3}{10n}+O(\frac{1}{n^2})

Let's apply the obtained asymptotic estimates to equality (*).

1(2n+1)2+2(2n+2)2++3n(5n)2\frac{1}{(2n+1)^2}+\frac{2}{(2n+2)^2}+\dots+\frac{3n}{(5n)^2} =log52+O(1n)2n(310n+O(1n2))=\log\frac{5}{2}+O(\frac{1}{n})-2n(\frac{3}{10n}+O(\frac{1}{n^2})) =log5235+O(1n)=\log\frac{5}{2}-\frac{3}{5}+O(\frac{1}{n})

limn+[1(2n+1)2+2(2n+2)2+3(2n+3)2+..3n(5n)2]\lim\limits_{n\to+\infty} [\frac{1}{(2n+1)^2}+\frac{2}{(2n+2)^2}+\frac{3}{(2n+3)^2}+..\frac{3n}{(5n)^2}] =log5235=\log\frac{5}{2}-\frac{3}{5}


Answer. log5235\log\frac{5}{2}-\frac{3}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS