Prove that
lim 1/(x+5)^2 = ∞
x→-5
We should prove that ∀M>0 ∃δM>0 ∀x,∣x+5∣<δM:∣f(x)∣>M.\forall M > 0 \;\; \exists \delta_M > 0 \;\; \forall x, |x+5| < \delta_M : |f(x)| > M.∀M>0∃δM>0∀x,∣x+5∣<δM:∣f(x)∣>M.
So for M we should determine δM.\delta_M.δM.
Let 1(x+5)2>M ⇒ (x+5)2<1M,∣x+5∣<1M ,δM=1M.\dfrac{1}{(x+5)^2} > M \; \Rightarrow \; (x+5)^2 < \dfrac{1}{M}, \\ |x+5| < \dfrac{1}{\sqrt{M}}\;, \delta_M = \dfrac{1}{\sqrt{M}}.(x+5)21>M⇒(x+5)2<M1,∣x+5∣<M1,δM=M1.
Therefore, when x tends to -5, the value of function increases and tends to infinity.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments