Examine whether the equation, x^3-11x+9=0 has a real root in the interval, [-1,2]
x3−11x+9=0x^3-11x+9=0x3−11x+9=0
f(x)=x3−11x+9f(x)=x^3-11x+9f(x)=x3−11x+9
Interval: [-1,2]
f(−1)=(−1)3−11(−1)+9=−1+11+9=19f(2)=(2)3−11(2)+9=8−22+9=−5f(-1)=(-1)^3-11(-1)+9 \\=-1+11+9 \\=19 \\f(2)=(2)^3-11(2)+9 \\=8-22+9 \\=-5f(−1)=(−1)3−11(−1)+9=−1+11+9=19f(2)=(2)3−11(2)+9=8−22+9=−5
Now, f(−1).f(2)=19(−5)=−95<0f(-1).f(2)=19(-5)=-95<0f(−1).f(2)=19(−5)=−95<0
∵f(−1).f(2)<0\because f(-1).f(2)<0∵f(−1).f(2)<0
So, yes, a real root exists in the interval [-1,2]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments