Question #291357

Examine whether the equation, x^3-11x+9=0 has a real root in the interval, [-1,2]

1
Expert's answer
2022-02-01T12:23:35-0500

Solution:

x311x+9=0x^3-11x+9=0

f(x)=x311x+9f(x)=x^3-11x+9

Interval: [-1,2]

f(1)=(1)311(1)+9=1+11+9=19f(2)=(2)311(2)+9=822+9=5f(-1)=(-1)^3-11(-1)+9 \\=-1+11+9 \\=19 \\f(2)=(2)^3-11(2)+9 \\=8-22+9 \\=-5

Now, f(1).f(2)=19(5)=95<0f(-1).f(2)=19(-5)=-95<0

f(1).f(2)<0\because f(-1).f(2)<0

So, yes, a real root exists in the interval [-1,2]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS