n=2∑∞nn2+3−n2−3
=n=2∑∞n(n2+3+n2−3)n2+3−n2+3
=n=2∑∞n(n2+3+n2−3)6 Use Limit Comparison Test
n→∞limbnan=n→∞limn21n(n2+3+n2−3)6=6, The p -series n=2∑∞n21 converges since p=2>1.
Therefore the series n=2∑∞nn2+3−n2−3 is convergent by Limit Comparison Test.
Comments