Question #291355

Find whether the following series are convergent or not


ii. ∞Σn=1 (√(n^2+3) - √(n^2-3)/ √n

1
Expert's answer
2022-02-07T15:58:15-0500
n=2n2+3n23n\displaystyle\sum_{n=2}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{n}

=n=2n2+3n2+3n(n2+3+n23)=\displaystyle\sum_{n=2}^{\infin}\dfrac{n^2+3-n^2+3}{n(\sqrt{n^2+3}+\sqrt{n^2-3})}


=n=26n(n2+3+n23)=\displaystyle\sum_{n=2}^{\infin}\dfrac{6}{n(\sqrt{n^2+3}+\sqrt{n^2-3})}

Use Limit Comparison Test


limnanbn=limn6n(n2+3+n23)1n2=6,\lim\limits_{n\to\infin}\dfrac{a_n}{b_n}=\lim\limits_{n\to\infin}\dfrac{\dfrac{6}{n(\sqrt{n^2+3}+\sqrt{n^2-3})}}{\dfrac{1}{n^2}}=6,

The pp -series n=21n2\displaystyle\sum_{n=2}^{\infin}\dfrac{1}{n^2} converges since p=2>1.p=2>1.

Therefore the series n=2n2+3n23n\displaystyle\sum_{n=2}^{\infin}\dfrac{\sqrt{n^2+3}-\sqrt{n^2-3}}{n} is convergent by Limit Comparison Test.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS