Question #290052

Find the limit of the sequence section 3.2.6

1
Expert's answer
2022-01-24T16:17:12-0500

Consider the sequence, n1nlimnn1n=limn(11n)=limn1limn1nWhere limn1n=0Hence,limnn1n=1\displaystyle \text{Consider the sequence, $\frac{n-1}{n}$}\\ \lim_{n \to \infty}\frac{n-1}{n} = \lim_{n \to \infty} (1-\frac1n)\\ =\lim_{n \to \infty}1 - \lim_{n \to \infty} \frac1n\\ \text{Where $\lim_{n \to \infty} \frac1n = 0$}\\ \text{Hence,} \lim_{n \to \infty}\frac{n-1}{n}=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS